

62-я Всесибирская открытая олимпиада школьников

Отборочный этап 2023-2024 уч. года

Решения заданий по химии

11 класс

Задание 11-1. (авторы И.А. Трофимов, А.С. Романов)

- 1. Основным отличием конструкции классической лампы накаливания от представленной на картинке является <u>наличие внутренней колбы</u> (такая конструкция называется «двойная колба»). Внутрь неё помещают небольшие количества А или В. Зная названия типов ламп, или рассчитав молярные массы А и В в п. 2, заполним пропуск <...> – «галоген».
- 2. Зная давление паров при известных объёме и температуре, можно найти молярные массы А и В по уравнению Менделеева-Клапейрона: $pV = (m/M)RT \rightarrow M = mRT/pV$;

$$M(\mathbf{A}) = (0,100 \ \Gamma \cdot 8,314 \ Дж/(моль \cdot K) \cdot 373 \ K)/(1,94 \ к\Pi a \cdot 1,00 \ л) = 160 \ \Gamma/моль,$$

$$M(\mathbf{B}) = (0.100 \ \Gamma \cdot 8.314 \ \text{Дж/(моль·К}) \cdot 373 \ \text{K})/(1.22 \ \text{к}\Pi \text{a} \cdot 1.00 \ \text{л}) = 254 \ \text{г/моль}.$$

Тогда A – бром Br_2 , B – иод I_2 . Уравнение реакции: [1] I_2 + $Br_2 \rightleftarrows 2IBr$, так как давление не зависит от степени превращения реагентов. Из трёх молекул, которые находятся в парах, полярной является лишь ІВг, следовательно можем сразу найти его мольную долю (обозначим за x): $x/(1-x) = 3 \rightarrow x = 3 - 3x \rightarrow x = 0.75 = 75\%$. Общее давление в сосуде равно $p_0(I_2) + p_0(Br_2) = 3,16 \text{ кПа.}$ Поскольку реакция проводится при постоянном объёме, давление прямо пропорционально количеству вещества, и по уравнению реакции можно найти давления остальных компонентов:

$$p(\text{IBr}) = \chi(\text{IBr}) \cdot p_{o \delta u \mu} = 0.75 \cdot 3.16 = \underline{2.37 \text{ } \kappa \Pi a};$$

$$p(I_2) = p_0(I_2) - p(IBr)/2 = 0.035 \text{ кПа}$$
 и $p(Br_2) = p_0(Br_2) - p(IBr)/2 = 0.755 \text{ кПа}$.

Соответствующие мольные доли:

$$\chi(I_2) = p(I_2)/p_{oбщ} = 1,1\%$$
, $\chi(Br_2) = p(Br_2)/p_{oбщ} = 23,9\%$ и $\chi(IBr) = 75,0\%$.

3. Уравнения реакций [2–9]: [2] $2Al + 3Br_2 \rightarrow 2AlBr_3$; [3] $2Fe + 3Br_2 \rightarrow 2FeBr_3$; [4, 5] $2P + 3Br_2 \rightarrow 2PBr_3$,

$$2P + 5Br_2 \rightarrow 2PBr_5; \textbf{[6]} Br_2 + 2KOH \xrightarrow{0 \text{ °C}} KBr + KBrO + H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{50 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + 5KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBr + 5KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 6KOH \xrightarrow{0 \text{ °C}} 5KBrO_3 + 3H_2O; \textbf{[7]} 3Br_2 + 3H_2O; \textbf{[7]} 3Br_2$$

[8]
$$8NH_3 + 3Br_2 \rightarrow 6NH_4Br + N_2\uparrow$$
; [9] $2Cs_3[Cr(OH)_6] + 3Br_2 + 4CsOH \xrightarrow{t^\circ} 2Cs_2CrO_4 + 6CsBr + 8H_2O$.

- 4. Определим формулу соли С; наиболее вероятно, что тяжёлый элемент это иод, что позволяет найти её формулу: $M(\mathbf{C}) = M(\mathbf{I})/\omega(\mathbf{I}) = 127/0,8467 = 150$ г/моль $\rightarrow \mathbf{C}$ – **иодид натрия NaI**. Тогда уравнения реакций:
- [10] $8\text{NaI} + 9\text{H}_2\text{SO}_{4(\text{конц})} \xrightarrow{t^\circ} 8\text{NaHSO}_4 + 4\text{I}_2\uparrow + \text{H}_2\text{S}\uparrow + 4\text{H}_2\text{O};$ [11] $2\text{NaI} + \text{Cl}_2 \to 2\text{NaCl} + \text{I}_2;$ [12] $8\text{NaI} + 3\text{Cl}_2 + 3\text{H}_2\text{O} \to 8\text{NaIO}_3 + 6\text{HCl};$ [13] $2\text{NaI} + \text{H}_2\text{O}_2 + \text{H}_2\text{SO}_4 \to 8\text{Na}_2\text{SO}_4 + \text{I}_2 + 2\text{H}_2\text{O};$

[14]
$$NaI + 3O_3 \rightarrow NaIO_3 + 3O_2\uparrow$$
; [15] $NaIO_3 + 5NaI + 3H_2SO_4 \rightarrow 3I_2 + 3Na_2SO_4 + 3H_2O$.

- **5.** Всего в 72 млн ламп содержится $11 \text{ мг} \cdot 72 \cdot 10^6 = 7.92 \cdot 10^8 \text{ мг} = 7.92 \cdot 10^5 \text{ г иода}$. В 1 л буровой воды иода (как элемента!) содержится $C(\text{NaI}) \cdot M(\text{I}) \cdot 1$ л = 2,5 · 10⁻⁴ моль/л · 127 г/моль · 1 л = **0.03175** г. Теперь, поделив массу иода в лампах на массовую концентрацию (г/л), найдём искомый объём буровой воды: $m_{\text{памл}}(I_2)/C_{\text{m}}(I) \approx$ $7.92 \cdot 10^5 \, \text{г/0.03175 r/n} \approx 25 \cdot 10^6 \, \text{л} = 25 \cdot 10^3 \, \text{m}^3.$
- 6. В галогенной лампе нить накаливания окружена иодом или бромом, которые реагируют с конденсировавшимся на стенках лампы вольфрамом, тем самым препятствуя его отложению на колбе. Причём этот процесс обратим, и полученные соединения вольфрама вновь распадаются на атомы на нити накаливания или в её окрестности под действием высокой температуры. В результате вольфрам возвращается на нить накаливания, что в конечном счёте и продлевает срок службы лампы.

Вещество $D - WBr_5$ (можно установить по массовой доле). Рассчитаем температуру сублимации WBr_5 , она определяется как температура, при которой ΔG° процесса $WBr_{5(ras)} \rightleftarrows WBr_{5(ras)}$ равна нулю (т.е. давление паров над твёрдой фазой равно атмосферному):

$$\Delta G^{\circ} = \Delta H^{\circ} - T_{\text{cy6}} \Delta S^{\circ} = 0 \rightarrow T_{\text{cy6}} = \frac{\Delta_{\text{cy6}} H^{\circ}}{\Delta_{\text{cy6}} S^{\circ}} = \left(\frac{-199,16 - (-311,71) \frac{\kappa \cancel{L} \mathcal{M}}{MO.16}}{461,47 - 271,95 \frac{\cancel{L} \mathcal{M}}{MO.16}}\right) * 1000 \frac{\cancel{L} \mathcal{M}}{\kappa \cancel{L} \mathcal{M}} = 594 \text{ K}.$$

Для нахождения температуры разложения расчёт делается аналогично:
$$WBr_{5(ras)} \rightleftarrows W_{(rb)} + 5Br_{(ras)},$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T_{pasn} \Delta S^{\circ} = 0 \rightarrow T_{pasn} = \frac{\Delta_{pasn} H^{\circ}}{\Delta_{pasn} S^{\circ}} = \left(\frac{5 \cdot 111,86 + 0 + 199,16 \frac{\kappa \mathcal{J} \times \kappa}{MOND}}{5 \cdot 175,02 + 32,66 - 461,47 \frac{\mathcal{J} \times \kappa}{MOND}}\right) * 1000 \frac{\mathcal{J} \times \kappa}{\kappa \mathcal{J} \times \kappa} = 1700 \text{ K}.$$

2.	Расчёт молярных масс $m{A}$ и $m{B}$ – по 0,5 б., формулы $m{A}$ и $m{B}$, уравнение реакции	$2 \cdot 0, 5 + 2 \cdot 1 + 1 + 3 \cdot 1 = 7 6.$
	[1], расчёт трёх мольных долей – по 1 б.	
3.	Уравнения реакций [2–9] – no 1 б.	$8 \cdot 1 = 8 6.$
4.	Подтверждённая формула соли C и уравнения реакций [10–15] – по 1 б.	$1+6\cdot 1=7 6.$
5.	Расчёт объёма буровой воды – 3 б.	3 б.
6.	Объяснение – 1 б., подтверждённая формула соли D 1 б., расчёт	$1+1+2\cdot 1=46.$
	температур сублимации и разложения – по 1 б.	
	Всего:	29 баллов

Задание 11-2. (авторы А.С. Романов, И.А. Трофимов)

1. Газоразрядные лампы используются для <u>наружного</u> освещения улиц и <u>внутреннего</u> освещения помещений, в <u>автомобильных фарах</u>, подводных <u>фонарях</u>, а также в <u>декоративном</u> освещении. Цветовая температура характеризует <u>цвет абсолютно черного тела</u>, нагретого до этой температуры. В быту цветовая температура характеризует тон, цвет и <u>«горячесть» источника света</u>, например свет с температурой 3000 К будет тёплым, а с увеличением температуры будет более холодным. Цветовую температуру солнечного излучения можно рас-

считать по формуле Стефана-Больцмана: $T = \sqrt[4]{\frac{6,3\cdot 10^7}{5,67\cdot 10^{-8}}} = 5774$ К. Отметим, что эта температура очень близ-ка к реальной температуре поверхности Солнца, поэтому его можно с хорошей точностью считать абсолютно черным телом.

- **2.** Образование бурого газа указывает на реакцию образования диоксида азота, исходя из чего простые вещества **A** и **B** представляют собой азот и кислород. Тогда **A** − $\mathbf{N_2}$, **B** − $\mathbf{O_2}$ (по сравнению их относительных масс). Уравнения реакций : [1] $\mathbf{N_2} + \mathbf{O_2} \rightleftarrows 2\mathbf{NO}$, [2] $2\mathbf{NO} + \mathbf{O_2} \to 2\mathbf{NO_2}$; [3] $2\mathbf{NO_2} + 2\mathbf{NaOH} \to \mathbf{NaNO_3} + \mathbf{NaNO_2} + \mathbf{H_2O}$. Тогда **соль** 1 − $\mathbf{NaNO_2}$ и **соль** 2 − $\mathbf{NaNO_3}$.
- **3.** При пропускании разряда сначала образуется некоторое количество монооксида азота, который при охлаждении окисляется кислородом до диоксида. Рассчитаем молярную массу бурого газа для проверки этого предположения:

$$M = \Delta m(\text{p-pa})/\text{n} = \Delta m(\text{p-pa})/(V/V_{\text{m}}) = \Delta m(\text{p-pa})/(pV/RT) =$$
 = 3,14 г/(100 кПа·1,00 л/(8,314 Дж/(моль·К)·298 K)) = 77,81 г/моль.

Это значительно отличается от ожидаемой молярной массы NO_2 (46 г/моль). Чем это объясняется? В интервале температур от -13 до 135 °C NO_2 в значительных количествах сосуществует со своим димером ($2NO_2 \rightleftharpoons N_2O_4$), что и объясняет отклонение средней молярной массы в большую сторону. Зная этот факт, можно рассчитать состав бурого газа: $46\chi(NO_2) + 92\chi(N_2O_4) = 77,81$; $\chi(NO_2) + \chi(N_2O_4) = 1 \rightarrow \chi(NO_2) = 31$ %, $\chi(N_2O_4) = 69$ %.

Найдём количество вещества щёлочи в 100 г 42,8 % раствора NaOH:

 $n({\rm NaOH}) = m({\rm NaOH})/M({\rm NaOH}) = (\omega({\rm NaOH}) \cdot m({\rm p-pa}))/M({\rm NaOH}) = 0,428 \cdot 100 \ г/40 \ г/моль = 1,07 \ моль.$ С химической точки зрения реакция N_2O_4 с NaOH аналогична реакции [3]:

$$N_2O_4 + 2NaOH \rightarrow NaNO_3 + NaNO_2 + H_2O$$
.

Таким образом, количество вещества NaOH, затрачиваемое на обе реакции: $n(\text{NaOH}) = 2n(\text{N}_2\text{O}_4) + n(\text{NO}_2) = 1,07$ моль; также $n(\text{NO}_2)/n(\text{N}_2\text{O}_4) = \chi(\text{NO}_2)/\chi(\text{N}_2\text{O}_4) = 31/69$. Эти выражения образуют систему уравнений, которая решается следующим образом: $n(\text{N}_2\text{O}_4) = 69n(\text{NO}_2)/31 \rightarrow 138n(\text{NO}_2)/31 + n(\text{NO}_2) = 1,07 \rightarrow 5,45n(\text{NO}_2) = 1,07 \rightarrow n(\text{NO}_2) = 0,196$ моль, тогда $n(\text{N}_2\text{O}_4) = 69\cdot 0,196$ моль/31 = 0,436 моль. Оба вещества находятся в газовой фазе, тогда её объем:

$$V=(n(\mathrm{NO_2})+n(\mathrm{N_2O_4}))\cdot V_\mathrm{m}=(n(\mathrm{NO_2})+n(\mathrm{N_2O_4}))\cdot (RT/p)=$$
 = $(0.196\ \mathrm{моль}+0.436\ \mathrm{моль})\cdot (8.314\ \mathrm{Дж/(моль}\cdot\mathrm{K})\cdot 298\ \mathrm{K})/100\ \mathrm{кПa}=\mathbf{15.7}\ \mathrm{л}.$

Можно заметить также, что на 1 моль димера нужно 2 моль щелочи, на 2 моль мономера нужно также 2 моль щелочи, а весят 1 моль димера столько же, сколько и 2 моль мономера, то есть на 1.07 моль NaOH нужно $m(NO_2+N_2O_4)=1.07$ моль * 46 г/моль = 49,22 г смеси. А по условию 1 литр смеси весит 3,14 г, что по пропорции дает те же 15,7 литров смеси газов

4. Хорошо растворимый в воде и образующийся из **A** (азота) газ **X** – это аммиак **NH**₃. Тогда простое вещество **C** – **водород H**₂. Уравнение реакции [**4**]: $N_2 + 3H_2 \rightleftharpoons 2NH_3$.

Рассчитаем массу аммиака, которая будет приходиться на раствор, содержащий 1000 г воды: x/(1000+x) = 0.3 $\rightarrow x = 428,57$ г аммиака. Значит в 1 литре воды растворяется 428,57/17 = 25,21 моль или $25,21\cdot8,314\cdot298/101,325 = 25,21\cdot24,45 = 616,4$ л аммиака можно растворить в 1 л воды при 25 °C и нормальном давлении аммиака.

5. При нагревании цианата аммония образуется мочевина $CO(NH_2)_2$, которую как раз получают взаимодействием аммиака **X** с углекислым газом при нагревании под давлением, **D** – **CO**₂. Ядовитый газ, образующийся из него при нагревании с углём **Y** – **CO**. Угарный газ, который получается при пропускании углекислого газа над

раскаленным углем, легко реагирует с оксидом иода(V) с образованием иода и с раствором хлорида палладия(II), при этом образуется мелкодисперсный осадок палладия. Уравнения реакций [5–9].

[5] $2NH_3 + CO_2 \rightarrow H_2O + CO(NH_2)_2$; [6] $2NH_3 + CO_2 + H_2O \rightarrow (NH_4)_2CO_3$ (или NH_4HCO_3);

[7] $CO_2 + C \rightarrow 2CO$; [8] $5CO + I_2O_5 \rightarrow I_2 + 5CO_2$; [9] $PdCl_2 + CO + H_2O \rightarrow Pd\downarrow + CO_2 + 2HCl$.

6. При взаимодействии аммиака с углекислым газом промежуточным веществом **M** является **карбамат аммония** – $NH_2COO^-NH_4^+$.

При взаимодействии 1 мг угарного газа с пентаоксидом иода образуется:

 $n(I_2) = m(CO)/M(CO) \cdot 1/5 = 1 \text{ мг/}28 \text{ г/моль} \cdot 1/5 = 0,007143 \text{ ммоль иода,}$

на его поглощение потребуется $n(\text{Na}_2\text{S}_2\text{O}_3) = 2n(\text{I}_2) = 0.01429$ ммоль тиосульфата натрия по уравнению реакции $2\text{Na}_2\text{S}_2\text{O}_3 + \text{I}_2 \rightarrow 2\text{NaI} + \text{Na}_2\text{S}_4\text{O}_6$. Такое количество вещества содержит $V(\text{Na}_2\text{S}_2\text{O}_3) = n(\text{Na}_2\text{S}_2\text{O}_3)/C(\text{Na}_2\text{S}_2\text{O}_3)$ = 0.01429 ммоль/0.0500 М = 0.286 мл раствора тиосульфата натрия.

В 50,0 мг палладия содержится 0,4717 ммоль палладия, тогда масса угарного газа равна $m(CO) = n(CO) \cdot M(CO) = n(Pd) \cdot M(CO) = 0,4717$ ммоль 28 г/моль = 13,21 мг, что соответствует ПДК в 13,21/0,6605 = **20 мг/м³ угарного газа**.

7. Запишем уравнение реакции сгорания смеси в общем виде: G + H + 4NaOH + xO₂ $\rightarrow I + 2$ H₂O. Пусть количества веществ G и H равны по 1 моль, тогда молярную массу I можно представить в виде M(I) = M(G) + $M(H) + 2M(Na_2O) + 32x$. Получаем уравнение на привес массы: $M(I)/(M(G) + M(H) + 4M(NaOH)) = 1,03461 \rightarrow$ 32x = 0.03461(M(G) + M(H)) + 41.54. Сумма молярных масс искомых веществ скорее всего является целым числом, как и коэффициент x перед O_2 в уравнении реакции. Отсюда простым перебором при x=2 получаем M(G) + M(H) = 649 г/моль. Желтый цвет пламени говорит о том, что скорее всего E - Na, тогда формулы искомых веществ представимы в виде $G - Na \mathcal{I}_n$, $H - Na \mathcal{I}_m$, где \mathcal{I}_m - элемент, образующий простое вещество F, а n и m это индексы в соответствующих формулах, которые пока могут принимать как целые, так и дробные значения (например, если $G - Na_3$), то n = 1/3). Запишем уравнение: $M(G) + M(H) = 46 + (n + m)M(3) = 649 \rightarrow$ $M(\Im) = M(F) = 603/(n+m)$. Заметим, что почти наверняка сумма $n+m \ge 3$, так как при меньших значениях суммы молярная масса ${\bf F}$ получается слишком большой. Как раз при n+m=3 получаем ${\bf M}({\bf F})=201$ г/моль и ${\bf F}-{\bf Hg}$. Суммарно 1 моль ${\bf G}$ и 1 моль ${\bf H}$ содержат 3 моль атомов ртути и два моль атомов натрия, тогда ${\bf I} Na_2HgO_2$. Также засчитывается как правильная и формула $I - Na_6Hg_3O_6$. Единственный вариант формул искомых веществ это G - NaHg, H - NaHg₂. Наличия люминофора требуют ртутные лампы, поскольку значительная часть фотонов, излучаемых атомами Нg в тлеющем разряде, относятся к жёсткому УФ-излучению, и для конвертации этих фотонов в фотоны с длинами волн видимого света внутреннюю сторону лампы покрывают слоем люминофора.

Система оценивания:

1.	Две области применения, цветовая температура – по 0.5 б., расчёт -1 б.	$2 \cdot 0.5 + 0.5 + 1 = 2.5 6.$
2.	Формулы веществ A , B , $coneŭ\ 1$ и 2 – no 1 б., уравнения реакций $[1–3]$ – no 1 б.	$4 \cdot 1 + 3 \cdot 1 = 7 6$.
3.	Молярная масса бурого газа — 1 б., формулы веществ в составе газа — по 1 б., мольные доли — по 2 б., объём бурого газа — 3 б. (из них за количество NaOH —	$1+2\cdot 1+2\cdot 2+3=10 \ 6.$
	1 б., решение системы уравнений – 2 б.; или за наличие любого другого правильного решения – полный балл)	
4.	*	$2\cdot 1+1+2=56.$
5.	Φ ормулы веществ D , Y , уравнения реакций [5–9] – no 1 б.	$2 \cdot 1 + 5 \cdot 1 = 7 6$.
6.	Формула вещества $M-1$ б., удельный объём раствора тиосульфата натрия — 3 б. (из них за расчёт $n(I_2)$, $n(Na_2S_2O_3)$, $V(Na_2S_2O_3)$ — по 1 б.), ПДК угарного газа — 2 б. (из них за расчёт $m(CO)$ и ПДК — по 1 б.)	1+3+2=66.
7.	Формулы веществ $E-I$ – по 2 б., указание на ртутные лампы – 0,5 б.	5.2+0.5=10.5 6.
	Всего:	48 баллов

Задание 11-3. (автор А.С. Чубаров)

1. $Na[Al(OH)_4]$ — тетрагидроксоалюминат натрия. **1** — внутренняя сфера; **2** — внешняя сфера; **3** — центральный атом (металл комплексообразователь); **4** — лиганд; **5** — координационное число.

Уравнения реакций [1]-[10]: [1] $AlCl_3 + 3NaOH = 3NaCl + Al(OH)_3$; [2] $Al(OH)_3 + NaOH = Na[Al(OH)_4]$;

- [3] $4NaOH_{(H36.)} + AlCl_3 = Na[Al(OH)_4] + 3NaCl;$ при таком порядке добавления гидроксид-ион изначально находится в избытке; по этой причине гидроксид алюминия не успевает сформировать осадок (сразу же растворяется) ответ на вопрос из текста задания; [4] $Na[Al(OH)_4] + 4HCl_{(H36.)} = NaCl + AlCl_3 + 4H_2O;$
- [5] $Na[Al(OH)_4] + CO_{2(H36.)} = NaHCO_3 + Al(OH)_3$; [6] $Na[Al(OH)_4] + NH_4Cl_{(H36)} = NaCl + NH_3 + H_2O + Al(OH)_3$;

[7] $Na[Al(OH)_4] \xrightarrow{t,^{\circ}C} NaAlO_2 + 2H_2O;$ [8] $FeCl_3 + 6KSCN = K_3[Fe(SCN)_6] + 3KCl,$ возможны $K_2[Fe(H_2O)(SCN)_5],$ $K[Fe(H_2O)_2(SCN)_4],$ $[Fe(H_2O)_3(SCN)_3];$ $Fe(SCN)_3$ не подходит, так как не является комплексной солью;

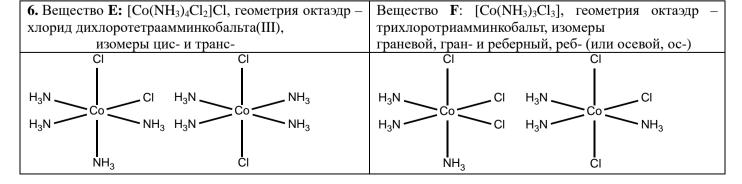
2. Для расчета молекулярной формулы соли **Y** необходимо массовые доли разделить на атомные массы элементов и найти наименьшее целое соотношение между ними. Получим соотношение Na : C : H : N : O = 13.7/23:35.7/12:4.2/1:8.3/14:38.1/16=0.5956:2.975:4.2:0.593:2.38=1:5:7:1:4 (NaC₅H₇NO₄). Так как в условии сказано, что соль динатриевая, получаем формулу Na₂C₁₀H₁₄N₂O₈. В кислоте **Y** вместо катионов натрия будут атомы водорода. Следовательно, молекулярная формула **Y** C₁₀H₁₆N₂O₈. Известно, что молекула кислоты **Y** симметричная, содержит

4 карбоксильные группы и не содержит связи N-N. Без 4 групп СООН получаем молекулярную формулу $C_6H_{12}N_2$. Для сохранения симметрии между атомами азота следует разместить две CH_2 -группы, в результате чего получаем формулу \mathbf{Y} , изображенную на рисунке справа.

- **3.** Уравнения реакций [**11**]-[**14**]: [**11**] $2Cu + 8HCl_{\text{конц., изб.}} + O_2 = 2H_2[CuCl_4] + 2H_2O$; [**12**] $I_2 + KI = K[I_3]$; [**13**] $AgCl + 2NH_3 = [Ag(NH_3)_2]Cl$; [**14**] $2MnSO_4 + H_2O_2 + 12KCN = 2K_3[Mn(CN)_6] + 2K_2SO_4 + 2KOH$;
- **4.** Хлорид **A** имеет формулу **X**Cl_n, причем $W_X = 45,38$ %, тогда $M_X/(M_X + 35,5n) = 0,4538$, $M_X = 29,49n$. При n=2 $M_X = 59$, металл **X** = Со или Ni. По нечетному числу протонов в ядре и цветовой гамме подходит кобальт (оттенки розового для соединений). Синий $CoCl_2$ (хлорид кобальта(II)) поглощает воду из влажного воздуха, образуя кристаллогидрат $CoCl_2*nH_2O$. Зная, что W(Co) = 24,8 %, составим уравнение 59/(59+71+18n) = 0,248, откуда получим n=6 и состав **B** $CoCl_2*6H_2O$ гексагидрат хлорида кобальта(II) или $[Co(H_2O)_6]Cl_2$ хлорид гексааквакобальта(II).

При взаимодействии $CoCl_2$ с газообразным аммиаком образуются аммиачные комплексы $CoCl_2*nNH_3$. С учетом W(Cl) = 30,6 % составим уравнение 71/(59+71+17n) = 0,306, откуда получим n = 6 и состав C $CoCl_2*6NH_3$ или $[Co(NH_3)_6]Cl_2$ – хлорид гексаамминкобальта(II).

Получение вещества ${\bf D}$ осуществляется в водном растворе в присутствии кислорода, что наводит на мысль о возможном окислении кобальта до степени окисления +3. В связи с этим в состав комплекса для нейтрализации заряда должно входить три хлорид-иона. С учетом W(Cl) = 42,5 %, получим, что ${\bf D}$ – $CoCl_3*5NH_3$ или $[Co(NH_3)_5Cl]Cl_2$ – хлорид хлоропентаамминкобальта(III). Один хлорид-ион войдет во внутреннюю сферу для сохранения KH 6.


Соединение **B** ($[Co(H_2O)_6]Cl_2$ или $CoCl_2*6H_2O$) относится к кристаллогидратам или аквакомплексам. В нем молекулы воды связаны с катионом Co^{3+} ковалентными связями, образующимися по донорно-акцепторному механизму (донор – атом кислорода, акцептор – катион металла).

Уравнения реакций [15]-[18]: [15] $CoCl_2 + 6H_2O = CoCl_2*6H_2O$ ([$Co(H_2O)_6$] Cl_2);

 $\textbf{[16]} \ CoCl_2 + 6NH_{3(ras)} = [Co(NH_3)_6]Cl_2; \\ \textbf{[17]} \ [Co(NH_3)_6)]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6)](NO_3)_2; \\ \textbf{[16]} \ CoCl_2 + 6NH_{3(ras)} = [Co(NH_3)_6]Cl_2; \\ \textbf{[17]} \ [Co(NH_3)_6)]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6)](NO_3)_2; \\ \textbf{[18]} \ CoCl_2 + 6NH_{3(ras)} = [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ CoCl_2 + (CoCl_2 + COCl_2 + COCl_2 + COCl_2 + COCl_$

[18] $4\text{CoCl}_2 + 16\text{NH}_3 + \text{O}_2 + 4\text{NH}_4\text{Cl} = 4[\text{Co(NH}_3)_5\text{Cl}]\text{Cl}_2 + 2\text{H}_2\text{O}.$

5. Пространственное строение цис- и транс-изомеров [Cu(NH₃)₂Cl₂] (геометрия – квадрат):

Система оценивания:

1. Название $Na[Al(OH)_4]$ и частей комплекса 1-5 по 0,5 б., избыток гидроксид-иона 1 б., структурная формула продукта реакции [10] 2 б.	0.5*6+1+2=66.
2. Молекулярная и структурная формула Y по 2,5 б.	2,5*2 = 5 6.
1-4. Уравнения реакций [1]-[18] no 1 б.	1*18 = 18 6.
4. Формулы веществ X , A - D , no 1 б., названия A - D , тип B , донорно-акцепторный механизм по $0,5$ б.	1*5+0.5*6=86.
5. Строение изомеров [Cu(NH ₃) ₂ Cl ₂] по 0,5 б.	0.5*2 = 1 6.
6. Коорд. формулы и названия ${\bf E}$ и ${\bf F}$ по 0,5 б., пространственные изомеры для ${\bf E}$ и ${\bf F}$ по 0,5 б	0.5*4+0.5*4=46.
Всего:	42 балла

Задание 11-4. (авторы И.А. Трофимов, А.С. Романов)

1. Первой стадией на представленной схеме является кислотный гидролиз карбида кальция, в его результате образуется ацетилен **A**. Нагревание ацетилена в присутствии активированного угля приводит к образованию бензола **B**. При его нагревании в смеси концентрированных азотной и серной кислот (также известной как *нитрующая смесь*) происходит нитрование ароматического кольца, в результате которого образуется нитробензол **C**. Его кипячение с цинком в кислой среде приводит к восстановлению нитрогруппы до аминогруппы, а образовавшийся хлорид анилиния при обработке водным раствором щёлочи превращается в анилин **D**.

$$CaC_{2} \xrightarrow{HCl_{(BOДH)}} HC \equiv CH \xrightarrow{C_{aKT.}} \underbrace{\frac{C_{aKT.}}{450 \, {}^{\circ}C}} \underbrace{\frac{HNO_{3}}{H_{2}SO_{4}, t^{\circ}C}} \underbrace{\frac{1) Zn, HCl, t^{\circ}C}{2) NaOH, H_{2}O}}_{\mathbf{D}}$$

Результат взаимодействия анилина с глицерином в кислой среде в смеси с нитробензолом неясен, однако в качестве подсказки дана брутто-формула вещества E. Можно заметить, что она отличается от формулы конечного продукта P_1 лишь на один атом кислорода. Тогда можно предположить, что продуктом реакции $D \to E$ является хинолин; это косвенно подтверждается использованием E в комбинации с палладием на сульфате бария при проведении реакции гидрирования ацетилена. Подобный метод получения хинолинов называется реакцией Скраупа; при её проведении вначале глицерин дегидратируется с образованием акролеина H_2C =CH-CHO, после чего к нему присоединяется молекула анилина. В результате образуется 1,2-дигидрохинолин, который под действием нитробензола окисляется до конечного продукта хинолина E. Определить направление протекания сульфирования E можно по структуре конечного вещества E0, следовательно, веществом E1 является хинолин-E2-сульфоновая кислота. На последней стадии сульфогруппу замещают на гидроксильную аналогично тому, как при превращении бензолсульфоновой кислоты в фенол.

Альтернативный метод получения \mathbf{P}_1 начинается с генерации катиона фенилдиазония из анилина на холоду, поскольку соли диазония разлагаются при повышенных температурах. В результате нагревания образовавшегося хлорида фенилдиазония в водном растворе при 60 °C образуется фенол \mathbf{G} . Поскольку бензольное кольцо в феноле содержит донорный заместитель, нитрование этого соединения проходит в более мягких условиях; ОН-группа является o,n-ориентантом, из-за чего в ходе нитрования может образоваться два изомера: o-нитрофенол и n-нитрофенол. Из них лишь в o-изомере присутствует внутримолекулярная водородная связь, следовательно, он и представляет собой вещество \mathbf{H} .

Гидрирование **H** на палладиевом катализаторе приводит к o-аминофенолу **J**, который реагирует с акролеином (образуется из глицерина и серной кислоты) и **H** в серной кислоте при нагревании. Данная реакция представляет собой синтез хинолинов по Скраупу, фактически она аналогична реакции $\mathbf{D} \to \mathbf{E}$: o-нитрофенол используется вместо нитробензола в качестве окислителя 1,2-дигидрохинолинового интермедиата.

$$\begin{array}{c|c}
OH & OH & OH \\
NO_2 & H_2 & OH \\
\hline
Pd/C & Pd/C & H_2SO_4, H, t^{\circ}C
\end{array}$$

$$OH & OH & OH \\
H_2SO_4, H, t^{\circ}C & OH \\
\hline
OH & P_1$$

Продуктом гидрирования ацетилена **A** на отравленном палладиевом катализаторе (с добавкой хинолина **E**) является этилен **K**. В результате алкилирования бензола **B** по Фриделю-Крафтсу образуется кумол или изопропилбензол **L**. На однократное протекание алкилирования указывает использование **L** в качестве источника для получения фенола (см. кумольный способ). Затем проводят бромирование **L**, поскольку изопропильная группа является донором электронной плотности, а потому является *о*,*n*-ориентантом, в результате основным продуктом является 1-бром-4-изопропилбензол **M**, замещение атома водорода в *о*-положении затруднено стерически. Нагревание **M** в растворе перманганата калия в кислой среде ведёт к его окислению с образованием *n*-бромбензойной кислоты **N**.

Введение N в реакцию с оксидом серебра(I) ведёт к образованию серебряной соли кислоты, которая затем при взаимодействии с бромом подвергается превращению по реакции Бородина-Хунсдиккера; согласно одному из предполагаемых механизмов, в ходе этой реакции образуется ацилгипобромит, который быстро распадается на углекислый газ и радикалы R· и ·Br; затем R· сталкивается с ацилгипобромитом, генерирует новые радикалы, а также образует продукт состава RBr. Догадываться об этом не следует, т.к. брутто-формула продукта реакции n-дибромбензола O приведена в условии, из чего однозначно устанавливается его структура. Затем O и этилен вводят в реакцию Xeка — реакцию кросс-сочетания, которая используется для образования связи C-C между ароматическими фрагментами и алкенами; реагентами служат арилгалогениды и алкены. B данном случае продуктом будет являться поли[napa-фенилен-винилен] P2.

$$\begin{array}{c|c}
CO_2H & Br \\
\hline
 & 1) Ag_2O \\
\hline
 & Br \\
\hline
 & P_2
\end{array}$$

$$\begin{array}{c|c}
K \\
\hline
 & P_2
\end{array}$$

$$\begin{array}{c|c}
R \\
\hline
 & P_2
\end{array}$$

$$\begin{array}{c|c}
Pd(P(C_6H_5)_3)_4], N(C_2H_5)_3
\end{array}$$

2. Уравнение реакции окисления М перманганатом калия в кислой среде представлено ниже:

$$5 + 18KMnO_4 + 27H_2SO_4 = 5 + 10CO_2 + 18MnSO_4 + 9K_2SO_4 + 42H_2O$$
Br

3. Структурная формула комплекса алюминия с 8-оксихинолинат-ионами приведена справа (данное вещество может существовать в виде четырёх изомеров — двух пар энантиомеров, на картинке приведён $\mathit{гран}\text{-}\Lambda\text{-}$ изомер, также полным баллом оцениваются структуры $\mathit{гран}\text{-}\Delta\text{-}$, $\mathit{oc}\text{-}\Lambda\text{-}$ и $\mathit{oc}\text{-}\Delta\text{-}$ изомеров). Для того чтобы найти концентрацию ионов алюминия в фильтрате, нужно рассчитать равновесную концентрацию 8-оксихинолинат-иона (обозначим его как Ox^-): $[\mathrm{Al}^{3+}] = \frac{5\cdot 10^{-33}}{[\mathit{ox}^-]^3}$. Поскольку концентрация вещества 8-оксихинолина (HOx) в 100 раз превышает концентрацию хлорида алюминия, то его влиянием на рН раствора можно пренебречь и далее можно считать, что рН раствора задает только сам 8-оксихинолин.

Произведём ряд расчётов различной степени точности. Начальная концентрация 8-оксихинолина равна $0.725/0.050\cdot145=0.10~\mathrm{M}$, запишем равновесия с участием 8-оксихинолина: $\mathrm{HOx}\rightleftarrows\mathrm{H}^{\scriptscriptstyle +}+\mathrm{Ox}^{\scriptscriptstyle -}$; $\mathrm{HOx}+\mathrm{H}_2\mathrm{O}\rightleftarrows\mathrm{H}_2\mathrm{Ox}^{\scriptscriptstyle +}+\mathrm{OH}^{\scriptscriptstyle -}$.

Наиболее простое решение содержит в себе идею о том, что при достаточно близких K_a и K_b , а также с учетом их малой величины можно предположить, что наличие 8-оксихинолина в растворе не влияет на pH и его можно приравнять к 7,00. Также можно предположить, что [HOx] \approx C(HOx) \approx 0,1 M, принимая во внимание малые значения констант диссоциации и высокую концентрацию слабого электролита. Тогда $[Ox^-]$ =

 $\frac{K_a[HOx]}{[H^+]} = \frac{1.5 \cdot 10^{-4} \text{ M}}{1.0000}$. Такое приближение вполне справедливо: тогда наш ответ **рН** = **7,00**. *Без обоснования* использования приближения такой ответ засчитываться не будет.

Задачу правильнее решать, зная приближенную формулу для расчёта рН амфолита:

$$\frac{pK_a(H_2Ox^+) + pK_a(HOx)}{2} = \frac{4,908 + 9,824}{2} = \textbf{7,366}, \text{ что отлично сходится даже со стандартным решением}$$

$$pH = -\lg[H^+] = -\lg\left(\sqrt{\frac{K_a(H_2Ox^+) \cdot (K_a(HOx) \cdot 0,1 + K_w)}{0,1 + K_a(H_2Ox^+)}}\right) = \textbf{7,366}. \quad \text{В этих случаях концентрация рассчитывается}$$

исходя из уравнения материального баланса: $0.1 = [HOx] + [Ox^-] + [H_2Ox^+] = [HOx] + \frac{K_a \cdot [HOx]}{[H^+]} + \frac{K_b \cdot [HOx]}{[OH^-]} \rightarrow$ [HOx] = 0,0993 M. Отсюда следует $[Ox^{-}] = 3,46\cdot10^{-4} \text{ M}$. За верный ответ также принимается расчёт с $[Ox^{-}] =$ $3.48 \cdot 10^{-4}$ M, рассчитанный в приближении [HOx] \approx C(HOx) \approx 0.1 M.

Однако наиболее честное решение предусматривает то, что в ходе реакции часть НОх депротонируется:

 $Al^{3+} + 3HOx \rightleftarrows [Al(Ox)_3] \downarrow + 3H^+$. Сравним количество выделившихся ионов водорода с количеством вещества 8-оксихинолина, оставшегося в растворе: $n_{oбp}(\mathrm{H}^+) \approx 3 \cdot 0{,}001\,M \cdot 0{,}05\,\pi = 1{,}5 \cdot 10^{-4}\,$ моль. $n_{ocm}(\mathrm{HOx}) \approx$ $(0.725 \,\Gamma/145 \,\Gamma/\text{моль}) - 1.5 \cdot 10^{-4} \,\text{моль} = 4.85 \cdot 10^{-3} \,\text{моль}$; заметим, что эти количества сравнимы, что может отразиться на итоговом результате расчёта. Тогда начальная концентрация 8-оксихинолина равна 4,85·10 3 моль/0,050 л = 0,097 М и $C_0(H^+) = 1,5 \cdot 10^{-4}$ моль/0,050 л = 0,003 М. Наличие значимого количества протонов в растворе подавляет диссоциацию 8-оксихинолина как кислоты и протонирует его: $HOx + H^+ \rightleftarrows H_2Ox^+$. Константа этого равновесия равна $K_H = \frac{[\mathrm{H_2Ox^+}]}{[\mathrm{H^+}][\mathrm{Hox}]} = \frac{[\mathrm{H_2Ox^+}][\mathrm{OH^-}]}{K_W[\mathrm{Hox}]} = \frac{K_b}{K_W} = 8,1 \cdot 10^4$. Пусть $x = [\mathrm{H_2Ox^+}]$, тогда: $8,1 \cdot 10^4 = \frac{x}{(0,003-x)(0,097-x)}$. Отсюда $x = 0,00299961\,\mathrm{M}$. Тогда концентрация аниона $\mathrm{Ox^-}$ равна: $[\mathrm{Ox^-}] = \mathrm{K_0[\mathrm{Hox}]}$

 $\frac{K_a[HOx]}{[H^+]} = \frac{3,62 \cdot 10^{-5} \text{ M}}{10^{-5} \text{ M}}$. При этом **pH** = **6,41**. Практически такой же ответ можно получить, предполагая, что все выделившиеся в ходе реакции осаждения протоны будут протонировать 8-оксихинолин; тогда рН рассчитаем по уравнению Гендерсона-Хассельбаха: $pH = pKa + lg[HOx]/[H_2Ox^+] = 4,908 + lg(0,094/0,003) \approx 6,41$.

Наконец, рассчитаем равновесную концентрацию ионов алюминия в растворе:

$$[Al^{3+}] = \frac{5 \cdot 10^{-33}}{[Ox^{-}]^3} = 1,48 \cdot 10^{-21} \text{ M } (pH = 7,00)$$
 или $1,21 \cdot 10^{-22} \text{ M } (pH = 7,366)$ или $1,05 \cdot 10^{-19} \text{ M } (pH = 6,41)$.

А еще можно посчитать константу равновесия следующего процесса:

$$Al^{3+} + 6Hox \rightleftharpoons [Al(Ox)_3] + 3H_2Ox^+$$

$$K = \frac{[H_2Ox^+]^3}{[Hox]^6[Al^{3+}]} = \frac{[H_2Ox^+]^3}{[Hox]^6[Al^{3+}]} \frac{[Ox^-]^3}{[Ox^-]^3} \frac{[H^+]^3}{[H^+]^3} \frac{[OH^-]^3}{[OH^-]^3} = \frac{K_a^3 K_b^3}{\Pi P K_w^3} = \mathbf{3,6\cdot10^{17}}$$
Если в исходное выражение для константы подставить $[H_2Ox^+] = 0,003M$, $[HOx] = 0,094$ M (это соответствует

полному протеканию данного процесса), то получится $[Al^{3+}]=1,09\cdot10^{-19}\,\mathrm{M}$, при этом рассчитывать рН раствора вроде бы и не нужно. Этот расчёт, по сути, эквивалентен предыдущему (при учёте неполного протекания реакции ответы совпадут).

Можно рассчитать аналитическую концентрацию ионов алюминия с учетом образования им ϵ гидроксокомплексов. Информации о физико-химических константах β_i , характеризующих данные комплексы, в задаче нет, поэтому этот расчёт здесь приведён исключительно в образовательных целях. Из демонстрационного расчёта при pH = 6.41 находим, что аналитическая концентрация ионов алюминия хоть и выше на несколько порядков, всё равно крайне мала по сравнению с концентрацией других частиц в растворе.

$$\begin{split} \mathsf{C}(\mathsf{Al}^{3+}) &= [\mathsf{Al}^{3+}] + [\mathsf{Al}(\mathsf{OH})^{2+}] + [\mathsf{Al}(\mathsf{OH})^{+}_{2}] + [\mathsf{Al}(\mathsf{OH})_{3}] + [\mathsf{Al}(\mathsf{OH})^{-}_{4}] = \\ &= [\mathsf{Al}^{3+}] + [\mathsf{Al}^{3+}][\mathsf{OH}^{-}]\beta_{1} + [\mathsf{Al}^{3+}][\mathsf{OH}^{-}]^{2}\beta_{2} + [\mathsf{Al}^{3+}][\mathsf{OH}^{-}]^{3}\beta_{3} + [\mathsf{Al}^{3+}][\mathsf{OH}^{-}]^{4}\beta_{4} = \\ &= [\mathsf{Al}^{3+}](1+27+3311+16982+436) = 20757[\mathsf{Al}^{3+}] = 20757 \cdot 1,05 \cdot 10^{-19} = 2,18 \cdot 10^{-15} \, \mathrm{M} \, (\mathrm{при} \, \mathrm{pH} = 6,41). \end{split}$$

1.	Структурные формулы $A - H$, $J - O$ – no 1,5 б.	14.1,5 = 21 6.
2.	Уравнение реакции – $1,5$ б., из них 1 б. за верные продукты, $0,5$ б. за верные	1,5 б.
	коэффициенты	
3.	Структурная формула комплекса 8-оксихинолина с алюминием – 0,5 б., расчёт	0.5+3=3.5 6.
	концентрации Al^{3+} в фильтрате – 3 б.	
	Всего:	26 баллов

62-я Всесибирская открытая олимпиада школьников

Отборочный этап 2023-2024 уч. года

Решения заданий по химии

Задание 10-1. (авторы И.А. Трофимов, А.С. Романов)

- 1. Основным отличием конструкции классической лампы накаливания от представленной на картинке является наличие внутренней колбы (такая конструкция называется «двойная колба»). Внутрь неё помещают небольшие количества **A** или **B**. По описанию простых веществ можно установить, что **A** представляет собой бром (единственное простое вещество, являющееся жидкостью бурого цвета), **B**, в свою очередь иод (устанавливается по характерному цвету паров простого вещества). Также, зная названия типов ламп, или рассчитав молярные массы **A** и **B** в п. 2, можно заполнить пропуск <...> «галоген».
- **2.** Зная давление 1 моль идеального газа при известных объёме и температуре, можно установить количества вещества газов в сосудах: n(A)/1,94 кПа = 1 моль/3100 кПа $\rightarrow n(A) = 6,26\cdot 10^{-4}$ моль, аналогичным образом $n(B) = 3,94\cdot 10^{-4}$ моль; M(A) = 160 г/моль, M(B) = 254 г/моль.

Доказали расчётом, что **A** – **бром Br₂**, **B** – **иод I₂**. Уравнение реакции: [1] $I_2 + Br_2 \rightleftharpoons 2IBr$, так как давление не зависит от степени превращения реагентов. Из трёх молекул, которые находятся в парах, полярной является лишь IBr, следовательно можем сразу найти его мольную долю (обозначим за x): $x/(1-x) = 3 \rightarrow x = 0.75 = 75\%$. Общее давление в сосуде равно $p_0(I_2) + p_0(Br_2) = 3.16$ кПа. Поскольку реакция проводится при постоянном объёме, давление прямо пропорционально количеству вещества, и по уравнению реакции можно найти давления остальных компонентов:

$$p(\mathrm{IBr}) = \chi(\mathrm{IBr}) \cdot p_{o \delta u} = 0.75 \cdot 3.16 = \underline{2.37 \ \mathrm{к\Pia}};$$

$$p(\mathrm{I}_2) = p_0(\mathrm{I}_2) - p(\mathrm{IBr})/2 = \underline{0.035 \ \mathrm{к\Pia}} \ \mathrm{H} \ p(\mathrm{Br}_2) = p_0(\mathrm{Br}_2) - p(\mathrm{IBr})/2 = \underline{0.755 \ \mathrm{\kappa\Pia}}.$$

Соответствующие мольные доли:

$$\chi(I_2) = p(I_2)/p_{o \delta \iota \iota \iota} = 1,1\%, \ \chi(Br_2) = p(Br_2)/p_{o \delta \iota \iota \iota} = 23,9\%$$
 и $\chi(IBr) = 75,0\%$.

- **3.** Уравнения реакций **[2–9]**: **[2]** $2Al + 3Br_2 \rightarrow 2AlBr_3$; **[3]** $2Fe + 3Br_2 \rightarrow 2FeBr_3$; **[4, 5]** $2P + 3Br_2 \rightarrow 2PBr_3$, $2P + 5Br_2 \rightarrow 2PBr_5$; **[6]** $Br_2 + 2KOH \xrightarrow{0 \, ^{\circ}C} KBr + KBrO + H_2O$; **[7]** $3Br_2 + 6KOH \xrightarrow{50 \, ^{\circ}C} 5KBr + KBrO_3 + 3H_2O$; **[8]** $8NH_3 + 3Br_2 \rightarrow 6NH_4Br + N_2\uparrow$; **[9]** $2Cs_3[Cr(OH)_6] + 3Br_2 + 4CsOH \xrightarrow{t^{\circ}} 2Cs_2CrO_4 + 6CsBr + 8H_2O$.
- **4.** Определим формулу соли C; наиболее вероятно, что тяжёлый элемент это иод, что позволяет найти её формулу: $M(C) = M(I)/\omega(I) = 127/0,8467 = 150$ г/моль $\rightarrow C$ **иодид натрия NaI**. Тогда уравнения реакций:
- [10] $8\text{NaI} + 9\text{H}_2\text{SO}_{4(\text{конц})} \xrightarrow{t^\circ} 8\text{NaHSO}_4 + 4\text{I}_2\uparrow + \text{H}_2\text{S}\uparrow + 4\text{H}_2\text{O};$ [11] $2\text{NaI} + \text{Cl}_2 \rightarrow 2\text{NaCl} + \text{I}_2;$
- [12] $NaI + 3Cl_2 + 3H_2O \rightarrow NaIO_3 + 6HCl$; [13] $2NaI + H_2O_2 + H_2SO_4 \rightarrow Na_2SO_4 + I_2 + 2H_2O$;
- [14] $NaI + 3O_3 \rightarrow NaIO_3 + 3O_2\uparrow$; [15] $NaIO_3 + 5NaI + 3H_2SO_4 \rightarrow 3I_2 + 3Na_2SO_4 + 3H_2O$.
- **5.** Всего в 72 млн ламп содержится $11 \text{ мг} \cdot 72 \cdot 10^6 = 7,92 \cdot 10^8 \text{ мг} = 7,92 \cdot 10^5 \text{ г иода}$. В 1 л буровой воды иода (как элемента!) содержится $C(\text{NaI}) \cdot M(\text{I}) \cdot 1$ л = $2,5 \cdot 10^{-4}$ моль/л·127 г/моль·1 л = 0,03175 г. Теперь, поделив массу иода в лампах на массовую концентрацию (г/л), найдём искомый объём буровой воды: $m_{\text{ламп}}(\text{I}_2)/C_{\text{m}}(\text{I}) \approx 7,92 \cdot 10^5 \text{ г/0},03175 \text{ г/л} \approx 25 \cdot 10^6 \text{ л} = 25 \cdot 10^3 \text{ м}^3$.
- **6.** В галогенной лампе нить накаливания окружена иодом или бромом, которые реагируют с конденсировавшимся на стенках лампы вольфрамом, тем самым препятствуя его отложению на колбе. Поскольку этот процесс обратим, полученные соединения вольфрама вновь распадаются на атомы на нити накаливания или в её окрестности под действием высокой температуры. В результате вольфрам возвращается на нить накаливания, что в конечном счёте и продлевает срок службы лампы.
- **7.** Формулы веществ можно установить по массовой доле вольфрама. Предположим, что для всех веществ в 1 формульной единице содержится по 1 атому вольфрама:

$$M(\mathbf{D}) = M(W)/\omega(W) = 184 \ \Gamma/\text{моль}/0,3151 = 583,9 \approx 584 \ \Gamma/\text{моль} = 184 + 5 \cdot 80 \rightarrow \mathbf{D} - \mathbf{WBr_5};$$
 $M(\mathbf{E}) = M(W)/\omega(W) = 184 \ \Gamma/\text{моль}/0,3538 = 520,1 \approx 520 \ \Gamma/\text{моль} = 184 + 4 \cdot 80 + 16 \rightarrow \mathbf{E} - \mathbf{WOBr_4};$
 $M(\mathbf{F}) = M(W)/\omega(W) = 184 \ \Gamma/\text{моль}/0,4894 = 376,0 \ \Gamma/\text{моль} = 184 + 2 \cdot 80 + 2 \cdot 16 \rightarrow \mathbf{F} - \mathbf{WO_2Br_2}.$

Пространственное строение этих молекул следующее (для **D** и **E** принимаются два возможных варианта):

Система оценивания:

1.	Указание на двойную колбу и «галоген» – по 0,5 б.	0.5+0.5=1 6.
2.	Расчёт молярных масс A и B – no 0,5 б., формулы A и B , уравнение реакции	$2 \cdot 0.5 + 2 \cdot 1 + 1 + 3 \cdot 1 = 7 6.$
	[1], расчёт трёх мольных долей – по 1 б.	
3.	Уравнения реакций [2–9] – no 1 б.	$8 \cdot 1 = 8 \ \sigma.$
4.	Подтверждённая формула соли С и уравнения реакций [10–15] – по 1 б.	$1+6\cdot 1=7 6.$
5.	Расчёт объёма буровой воды – 3 б.	3 б.
6.	Объяснение – 1 б.	1 б.
7.	Брутто-формулы $D - F$ – по 1 б., пространственное строение и названия	$3 \cdot 1 + 3 \cdot 1 + 3 \cdot 1 = 9 6.$
	геометрических фигур $oldsymbol{D}-oldsymbol{F}$ – no 1 б.	
	Всего:	36 баллов

Задание 10-2. (авторы А.С. Романов, И.А. Трофимов)

- 1. Газоразрядные лампы используются для <u>наружного</u> освещения улиц и <u>внутреннего</u> освещения помещений, в <u>автомобильных фарах</u>, подводных <u>фонарях</u>, а также в <u>декоративном</u> освещении. Цветовая температура характеризует <u>пвет абсолютно черного тела</u>, нагретого до этой температуры. В быту цветовая температура характеризует тон, цвет и <u>«горячесть» источника света</u>, например свет с температурой 3000 К будет тёплым, а с увеличением температуры будет более холодным. Цветовую температуру солнечного излучения можно рассчитать по формуле Стефана-Больцмана: $T = \sqrt[4]{\frac{6,3\cdot 10^7}{5,67\cdot 10^{-8}}} = 5774$ К. Отметим, что эта температура очень близка к реальной температуре поверхности Солнца, поэтому его можно с хорошей точностью считать абсолютно черным телом.
- **2.** Образование бурого газа указывает на реакцию образования диоксида азота, исходя из чего простые вещества **A** и **B** представляют собой азот и кислород. Тогда $\mathbf{A} \mathbf{N_2}$, $\mathbf{B} \mathbf{O_2}$ (по сравнению их относительных масс). Уравнения реакций : [1] $\mathbf{N_2} + \mathbf{O_2} \rightleftarrows 2\mathbf{NO}$, [2] $2\mathbf{NO} + \mathbf{O_2} \to 2\mathbf{NO_2}$; [3] $2\mathbf{NO_2} + 2\mathbf{NaOH} \to \mathbf{NaNO_3} + \mathbf{NaNO_2} + \mathbf{H_2O}$. Тогда **соль** $1 \mathbf{NaNO_2}$ и **соль** $2 \mathbf{NaNO_3}$.
- **3.** При пропускании разряда сначала образуется некоторое количество монооксида азота, который при охлаждении окисляется кислородом до диоксида. Рассчитаем молярную массу бурого газа для проверки этого предположения: $M = \Delta m(\text{p-pa})/\text{n} = \Delta m(\text{p-pa})/(V/V_{\text{m}}) = \Delta m(\text{p-pa})/(PV/RT) =$

$$= 3.14 \ \Gamma/(100 \ \text{к}\Pi \text{a} \cdot 1.00 \ \text{л}/(8.314 \ \text{Дж/(моль} \cdot \text{K}) \cdot 298 \ \text{K})) = 77.81 \ \Gamma/\text{моль}.$$

Это значительно отличается от ожидаемой молярной массы NO_2 (46 г/моль). Чем это объясняется? В интервале температур от -13 до 135 °C NO_2 сосуществует со своим димером ($2NO_2 \rightleftharpoons N_2O_4$), что и объясняет отклонение средней молярной массы в большую сторону. Зная этот факт, можно рассчитать состав бурого газа: $46\chi(NO_2) + 92\chi(N_2O_4) = 77,81$; $\chi(NO_2) + \chi(N_2O_4) = 1 \rightarrow \chi(NO_2) = 31$ %, $\chi(N_2O_4) = 69$ %. Найдём количество вещества щёлочи в 100 г 42,8 % раствора NaOH:

 $n(\text{NaOH}) = m(\text{NaOH})/M(\text{NaOH}) = (\omega(\text{NaOH}) \cdot m(\text{p-pa}))/M(\text{NaOH}) = 0,428 \cdot 100 \text{ г/40 г/моль} = 1,07 \text{ моль}.$ С химической точки зрения реакция N_2O_4 с NaOH аналогична реакции [3]:

$$N_2O_4 + 2NaOH \rightarrow NaNO_3 + NaNO_2 + H_2O$$
.

Таким образом, количество вещества NaOH, затрачиваемое на обе реакции: $n(\text{NaOH}) = 2n(\text{N}_2\text{O}_4) + n(\text{NO}_2) = 1,07$ моль; также $n(\text{NO}_2)/n(\text{N}_2\text{O}_4) = \chi(\text{NO}_2)/\chi(\text{N}_2\text{O}_4) = 31/69$. Эти выражения образуют систему уравнений, которая решается следующим образом: $n(\text{N}_2\text{O}_4) = 69n(\text{NO}_2)/31 \rightarrow 138n(\text{NO}_2)/31 + n(\text{NO}_2) = 1,07 \rightarrow 100$

 $5,45n(NO_2)=1,07 \rightarrow n(NO_2)=0,196$ моль, тогда $n(N_2O_4)=69\cdot 0,196$ моль/31=0,436 моль. Оба вещества находятся в газовой фазе, тогда её объем: $V=(n(NO_2)+n(N_2O_4))\cdot V_m=(n(NO_2)+n(N_2O_4))\cdot (RT/p)=$

 $= (0.196 \text{ моль} + 0.436 \text{ моль}) \cdot (8.314 \text{ Дж/(моль} \cdot \text{K}) \cdot 298 \text{ K})/100 \text{ кПа} = 15.7 \text{ л}.$

Можно заметить также, что на 1 моль димера нужно 2 моль щелочи, на 2 моль мономера нужно также 2 моль щелочи, а весят 1 моль димера столько же, сколько и 2 моль мономера, то есть на 1.07 моль NaOH нужно $m(NO_2+N_2O_4)=1.07$ моль * 46 г/моль = 49,22 г смеси. А по условию 1 литр смеси весит 3,14 г, что по пропорции дает те же 15,7 литров смеси газов

4. Хорошо растворимый в воде и образующийся из **A** (азота) газ **X** – это аммиак **NH**₃. Тогда простое вещество **C** – **водород H**₂. Уравнение реакции [**4**]: $N_2 + 3H_2 \rightleftarrows 2NH_3$.

Рассчитаем массу аммиака, которая будет приходиться на раствор, содержащий 1000 г воды: x/(1000+x) = 0.3 $\rightarrow x = 428,57$ г аммиака. Значит в 1 литре воды растворяется 428,57/17 = 25,21 моль или $25,21\cdot8,314\cdot298/101,325 = 25,21\cdot24,45 = 616,4$ л аммиака можно растворить в 1 л воды при 25 °C и нормальном давлении аммиака.

- **5.** При нагревании цианата аммония образуется мочевина $CO(NH_2)_2$, которую как раз получают взаимодействием аммиака **X** с углекислым газом при нагревании под давлением, **D** CO_2 . Ядовитый газ, образующийся из него при нагревании с углём **Y** CO. Угарный газ, который получается при пропускании углекислого газа над раскаленным углем, легко реагирует с оксидом иода(V) с образованием иода и с раствором хлорида палладия(II), при этом образуется мелкодисперсный осадок палладия. Уравнения реакций [5–9].
- [5] $2NH_3 + CO_2 \rightarrow H_2O + CO(NH_2)_2$; [6] $2NH_3 + CO_2 + H_2O \rightarrow (NH_4)_2CO_3$ (или NH_4HCO_3);
- [7] $CO_2 + C \rightarrow 2CO$; [8] $5CO + I_2O_5 \rightarrow I_2 + 5CO_2$; [9] $PdCl_2 + CO + H_2O \rightarrow Pd\downarrow + CO_2 + 2HCl$.
- **6.** При взаимодействии аммиака с углекислым газом промежуточным веществом **M** является **карбамат аммония** $NH_2COO^-NH_4^+$.

При взаимодействии 1 мг угарного газа с пентаоксидом иода образуется:

 $n(I_2) = m(CO)/M(CO) \cdot 1/5 = 1 \text{ мг/28 г/моль} \cdot 1/5 = 0,007143 \text{ ммоль иода,}$

на его поглощение потребуется $n(\text{Na}_2\text{S}_2\text{O}_3) = 2n(\text{I}_2) = 0.01429$ ммоль тиосульфата натрия по уравнению реакции $2\text{Na}_2\text{S}_2\text{O}_3 + \text{I}_2 \rightarrow 2\text{NaI} + \text{Na}_2\text{S}_4\text{O}_6$. Такое количество вещества содержит $V(\text{Na}_2\text{S}_2\text{O}_3) = n(\text{Na}_2\text{S}_2\text{O}_3)/C(\text{Na}_2\text{S}_2\text{O}_3)$ = 0.01429 ммоль/0.0500 М = 0.286 мл раствора тиосульфата натрия.

- В 50,0 мг палладия содержится 0,4717 ммоль палладия, тогда масса угарного газа равна $m(CO) = n(CO) \cdot M(CO) = n(Pd) \cdot M(CO) = 0,4717$ ммоль 28 г/моль = 13,21 мг, что соответствует ПДК в 13,21/0,6605 = **20 мг/м**³ **CO**.
- 7. Запишем уравнение реакции сгорания смеси в общем виде: G + H + 4NaOH + xO₂ $\rightarrow I + 2$ H₂O. Пусть количества веществ G и H равны по 1 моль, тогда молярную массу I можно представить в виде M(I) = M(G) + $M(\mathbf{H}) + 2M(Na_2O) + 32x$. Получаем уравнение на привес массы: $M(\mathbf{I})/(M(\mathbf{G}) + M(\mathbf{H}) + 4M(NaOH)) = 1,03461 \rightarrow$ 32x = 0.03461(M(G) + M(H)) + 41,54. Сумма молярных масс искомых веществ скорее всего является целым числом, как и коэффициент x перед O_2 в уравнении реакции. Отсюда простым перебором при x=2 получаем M(G) + M(H) = 649 г/моль. Желтый цвет пламени говорит о том, что скорее всего E - Na, тогда формулы искомых веществ представимы в виде $G - Na \ni_n$, $H - Na \ni_m$, где \ni – элемент, образующий простое вещество F, а n и m это индексы в соответствующих формулах, которые пока могут принимать как целые, так и дробные значения (например, если $G - Na_3 Э$, то n = 1/3). Запишем уравнение: $M(G) + M(H) = 46 + (n + m)M(Э) = 649 \rightarrow$ $M(\Im) = M(F) = 603/(n+m)$. Заметим, что почти наверняка сумма $n+m \ge 3$, так как при меньших значениях суммы молярная масса \mathbf{F} получается слишком большой. Как раз при n+m=3 получаем $\mathbf{M}(\mathbf{F})=201$ г/моль и **F** – **Hg**. Суммарно 1 моль **G** и 1 моль **H** содержат 3 моль атомов ртути и два моль атомов натрия, тогда **I** – Na_2HgO_2 . Также засчитывается как правильная и формула $I - Na_6Hg_3O_6$. Единственный вариант формул искомых веществ это G – NaHg, H – NaHg₂. Наличия люминофора требуют ртутные лампы, поскольку значительная часть фотонов, излучаемых атомами Нд в тлеющем разряде, относятся к жёсткому УФ-излучению, и для конвертации этих фотонов в фотоны с длинами волн видимого света внутреннюю сторону лампы покрывают слоем люминофора.

1.	Две области применения, цветовая температура – по 0,5 б., расчёт – 1 б.	$2 \cdot 0.5 + 0.5 + 1 = 2.5 6.$
2.	Формулы веществ A , B , солей 1 и 2 – по 1 б., уравнения реакций [1–3] – по 1 б.	$4 \cdot 1 + 3 \cdot 1 = 7 6$.
3.	Молярная масса бурого газа — 1 б., формулы веществ в составе газа — по 1 б., мольные доли — по 2 б., объём бурого газа — 3 б. (из них за количество NaOH — 1 б., решение системы уравнений — 2 б.; или за наличие любого другого правильного решения — полный балл)	$1+2\cdot 1+2\cdot 2+3=10 \ 6.$
4.	Формулы веществ C , X , уравнение реакции $[4]$ — по 1 б., объём X растворимого в 1 л воды -2 б. (из них за расчёт массы аммиака -1 б., расчёт объёма -1 б.)	$2\cdot 1 + 1 + 2 = 5 6$.
5.	Формулы веществ D , Y , уравнения реакций $[5-9]$ – no 1 б.	$2 \cdot 1 + 5 \cdot 1 = 7 6$.

6.	Φ ормула вещества M -1 б., удельный объём раствора тиосульфата натрия $-$	1+3+2=66.
	3 б. (из них за расчёт $n(I_2)$, $n(Na_2S_2O_3)$, $V(Na_2S_2O_3)$ – no 1 б.), ПДК угарного газа – 2 б. (из них за расчёт $m(CO)$ и ПДК – no 1 б.)	
7.	Формулы веществ $E-I$ – по 2 б., указание на ртутные лампы – 0,5 б.	$5.2 + 0.5 = 10.5 \delta.$
	Всего:	48 баллов

Задание 10-3. (автор А.С. Чубаров)

1. $Na[Al(OH)_4]$ — тетрагидроксоалюминат натрия. **1** — внутренняя сфера; **2** — внешняя сфера; **3** — центральный атом (металл комплексообразователь); **4** — лиганд; **5** — координационное число.

Уравнения реакций [1]-[9]: [1] $AlCl_3 + 3NaOH = 3NaCl + Al(OH)_3$; [2] $Al(OH)_3 + NaOH = Na[Al(OH)_4]$;

- [3] $4NaOH_{(H35.)} + AlCl_3 = Na[Al(OH)_4] + 3NaCl;$ при таком порядке добавления гидроксид-ион изначально находится в избытке; по этой причине гидроксид алюминия не успевает сформировать осадок (сразу же растворяется) ответ на вопрос из текста задания; [4] $Na[Al(OH)_4] + 4HCl_{(H35.)} = NaCl + AlCl_3 + 4H_2O;$
- [5] $Na[Al(OH)_4] + CO_{2(H36.)} = NaHCO_3 + Al(OH)_3$; [6] $Na[Al(OH)_4] + NH_4Cl_{(H36)} = NaCl + NH_3 + H_2O + Al(OH)_3$;
- [7] Na[Al(OH)₄] $\xrightarrow{t, {}^{\circ}C}$ NaAlO₂ + 2H₂O; [8] FeCl₃ + 6KSCN = K₃[Fe(SCN)₆] + 3KCl, возможны K₂[Fe(H₂O)(SCN)₅], K[Fe(H₂O)₂(SCN)₄], [Fe(H₂O)₃(SCN)₃]; Fe(SCN)₃ не подходит, так как не является комплексной солью;
- [9] $FeCl_3 + K_4[Fe(CN)_6] = KFe[Fe(CN)_6] + 3KCl$ (возможен вариант $Fe_4[Fe(CN)_6]_3$);
- **2.** Уравнения реакций [**10**]-[**13**]: [**10**] $2Cu + 8HCl_{\text{конц., изб.}} + O_2 = 2H_2[CuCl_4] + 2H_2O;$ [**11**] $I_2 + KI = K[I_3];$
- [12] $AgCl + 2NH_3 = [Ag(NH_3)_2]Cl;$ [13] $2MnSO_4 + H_2O_2 + 12KCN = 2K_3[Mn(CN)_6] + 2K_2SO_4 + 2KOH;$
- 3. Хлорид **A** имеет формулу \mathbf{X} Cl_n, причем $\mathbf{W_X} = 45,38$ %, тогда $\mathbf{M_X}/(\mathbf{M_X} + 35,5\mathrm{n}) = 0,4538$, $\mathbf{M_X} = 29,49\mathrm{n}$. При n=2 $\mathbf{M_X} = 59$, металл $\mathbf{X} = \mathrm{Co}$ или Ni. По нечетному числу протонов в ядре и цветовой гамме подходит кобальт (оттенки розового для соединений). Синий $\mathrm{CoCl_2}$ (хлорид кобальта(II)) поглощает воду из влажного воздуха, образуя кристаллогидрат $\mathrm{CoCl_2}^*\mathrm{nH_2O}$. Зная, что $\mathrm{W}(\mathrm{Co}) = 24,8$ %, составим уравнение $59/(59+71+18\mathrm{n}) = 0,248$, откуда получим $\mathrm{n} = 6$ и состав B $\mathrm{CoCl_2}^*\mathrm{6H_2O}$ гексагидрат хлорида кобальта(II) или $[\mathrm{Co}(\mathrm{H_2O})_6]\mathrm{Cl_2}$ хлорид гексааквакобальта(II).

При взаимодействии $CoCl_2$ с газообразным аммиаком образуются аммиачные комплексы $CoCl_2*nNH_3$. С учетом W(Cl) = 30,6 % составим уравнение 71/(59+71+17n) = 0,306, откуда получим n = 6 и состав C $CoCl_2*6NH_3$ или $[Co(NH_3)_6]Cl_2$ – хлорид гексаамминкобальта(II).

Получение вещества ${\bf D}$ осуществляется в водном растворе в присутствии кислорода, что наводит на мысль о возможном окислении кобальта до степени окисления +3. В связи с этим в состав комплекса для нейтрализации заряда должно входить три хлорид-иона. С учетом W(Cl) = 42,5 %, получим, что ${\bf D}$ – $CoCl_3*5NH_3$ или $[Co(NH_3)_5Cl]Cl_2$ – хлорид хлоропентаамминкобальта(III). Один хлорид-ион войдет во внутреннюю сферу для сохранения KY 6.

Соединение **B** ([Co(H_2O)₆]Cl₂ или CoCl₂*6 H_2O) относится к кристаллогидратам или аквакомплексам. В нем молекулы воды связаны с катионом Co³⁺ ковалентными связями, образующимися по донорно-акцепторному механизму (донор – атом кислорода, акцептор – катион металла).

Уравнения реакций [14]-[17]: [14] $CoCl_2 + 6H_2O = CoCl_2*6H_2O$ ([$Co(H_2O)_6$] Cl_2);

- $\textbf{[15]} \ CoCl_2 + 6NH_{3(ras)} = [Co(NH_3)_6]Cl_2; \\ \textbf{[16]} \ [Co(NH_3)_6)]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6)](NO_3)_2; \\ \textbf{[15]} \ CoCl_2 + 6NH_{3(ras)} = [Co(NH_3)_6]Cl_2; \\ \textbf{[16]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6)](NO_3)_2; \\ \textbf{[17]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_2; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6]Cl_3; \\ \textbf{[18]} \ [Co(NH_3)_6]Cl_3 + 2AgNO_3 = 2AgCl + [$
- [17] $4\text{CoCl}_2 + 16\text{NH}_3 + \text{O}_2 + 4\text{NH}_4\text{Cl} = 4[\text{Co(NH}_3)_5\text{Cl}]\text{Cl}_2 + 2\text{H}_2\text{O}.$
- **4.** Пространственное строение цис- и трансизомеров [$Cu(NH_3)_2Cl_2$] (геометрия квадрат):
- H_3N Cu NH_3 H_3N Cu NH_4 NH_5

5. Вещество **E:** $[Co(NH_3)_4Cl_2]Cl$, геометрия октаэдр – хлорид дихлоротетраамминкобальта(III), цис- и транс-изомеры

Вещество **F**: $[Co(NH_3)_3Cl_3]$, геометрия октаэдр – трихлоротриамминкобальт, граневой, граниреберный, реб- (или осевой, ос.) изомеры

Система оценивания:

1. Название $Na[Al(OH)_4]$ и частей комплекса 1-5 по $0,5$ б., избыток гидроксид-иона 1 б.	0.5*6+1 = 46.
1-3. Уравнения реакций [1]-[17] no 1 б.	1*17 = 17 б.
3. Формулы веществ X , A - D по 1 б., названия A - D , тип B , донорно-акцепторный механизм	1*5+1*6=11 6.
по 1 б.	
4. Строение изомеров [Cu(NH ₃) ₂ Cl ₂] по 1 б.	1*2 = 2 6.
5. Координационные формулы и названия E и F по 1 б., пространственные изомеры для E	1*4+1*4=86.
и F no 1 б.	
Всего:	42 балла

Задание 10-4. (авторы И.А. Трофимов, А.С. Романов)

- 1. Размерность постоянной Планка можно определить из уравнения: $h = \lambda E/c \rightarrow [h] = [\lambda E/c] = \text{м·Дж/(м/c)} = \text{Дж·с.}$ Границы диапазона длин волн видимого света составляют примерно 350-750 нм (допустима нижняя граница 350-400 нм, верхняя 725-775 нм).
- **2**. Пересчитаем мольные энергии связей в расчёте на одну молекулу: $E_{cs} = E_{cs.мольн.}/N_A$. Тогда энергии связей в одиночных молекулах:

при
$$N_A=6,02\cdot 10^{23}$$
 моль $^{-1}$: $E_{cs}(\text{Cl-Cl})=3,97\cdot 10^{-19}$ Дж, $E_{cs}(\text{Br-Br})=3,16\cdot 10^{-19}$ Дж; при $N_A=6,023\cdot 10^{23}$ моль $^{-1}$: $E_{cs}(\text{Cl-Cl})=3,970\cdot 10^{-19}$ Дж, $E_{cs}(\text{Br-Br})=3,156\cdot 10^{-19}$ Дж.

Рассчитаем теперь длину волны фотона, которой достаточно для разрыва связей с данными энергиями: $E_{cs} = hc/\lambda \rightarrow \lambda = hc/E_{cs}$. Тогда ($hc = 1,989 \cdot 10^{-25}$ Дж·м):

- $\lambda(\text{Cl-Cl}) = (1,989 \cdot 10^{-25} \text{ Дж·м})/(3,97 \cdot 10^{-19} \text{ Дж}) =$ **501 нм**, $\lambda(\text{Br-Br}) = (1,989 \cdot 10^{-25} \text{ Дж·м})/(3,16 \cdot 10^{-19} \text{ Дж}) =$ **629 нм**; если использовать результаты расчёта E_{cs} с $N_A = 6,023 \cdot 10^{23} \text{ моль}^{-1}$: $\lambda(\text{Cl-Cl}) =$ **501 нм**, $\lambda(\text{Br-Br}) =$ **630 нм**.
- **3**. При хлорировании метана образуются следующие продукты: CH_3Cl , CH_2Cl_2 , $CHCl_3$, CCl_4 и хлороводород HCl. Хорошо известно, что хлороводород является газом (соляной кислотой правильно называть лишь его водный раствор), следовательно (исходя из молекулярной массы продуктов), вторым газообразным соединением является хлорметан. Уравнение реакции: $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$.
- 4. Структурные формулы продуктов монохлорирования изображены справа. Рассмотрим вначале в общем виде решение задачи о нахождении соотношения констант скоростей:
- $r_i = \mathrm{d}c(P_i)/\mathrm{d}t \rightarrow r_1: r_2: r_3 = \mathrm{d}c(P_1)/\mathrm{d}t: \mathrm{d}c(P_2)/\mathrm{d}t: \mathrm{d}c(P_3)/\mathrm{d}t = c(P_1): c(P_2): c(P_3) = n(P_1): n(P_2): n(P_3) = \chi(P_1): \chi(P_2): \chi(P_3).$ Также $r_1: r_2: r_3 = k_1 \cdot c_{\mathit{ank}} \cdot N_1: k_2 \cdot c_{\mathit{ank}} \cdot N_2: k_3 \cdot c_{\mathit{ank}} \cdot N_3 = k_1 \cdot N_1: k_2 \cdot N_2: k_3 \cdot N_3.$ Тогда имеем: $\chi(P_1): \chi(P_2): \chi(P_3) = k_1 \cdot N_1: k_2 \cdot N_2: k_3 \cdot N_3 \rightarrow k_1: k_2: k_3 = \chi(P_1)/N_1: \chi(P_2)/N_2: \chi(P_3)/N_3.$

Для решения нашей задачи осталось понять, какие доли соответствуют каким продуктам. Исходя из того, что два продукта находятся в эквимолярном соотношении, $k_l \cdot N_l = k_m \cdot N_m$; это выполнимо для $k_l = k_m = k_2$, тогда $N_l = N_m = 4$. Тогда меньше всего продукта замещения у первичного атома углерода, оставшееся значение соответствует продукту замещения у третичного атома углерода. Тогда:

- $3:15,2:15,2:5=3k_1:4k_2:4k_2:k_3\rightarrow k_1:k_2:k_3=\mathbf{1}:\mathbf{3,8}:\mathbf{5}.$
- **5**. Бромирование протекает избирательнее, чем хлорирование: в то время как для хлорирования $k_1 < k_2 < k_3$, для реакции бромирования $k_1 << k_2 << k_3$ (константы скорости отличаются друг от друга на порядок-два). Обозначим продукт первичного замещения как **1**, третичного как **3**, продукты вторичного как **2** и **2'**. Тогда получим ряд $3 > 2 \approx 2' > 1$.
- **6**. *а*) да, *б*) нет. Для реакции *а*) основным продуктом будет тетрафторметан CF_4 , его структурная формула приведена справа. Помимо него в незначительных количествах образуются продукты неполного фторирования и деструкции 2-метилбутана.
- 7. Химически инертный газ \mathbf{Y} это N_2 , по материальному балансу реакционноспособная частица \mathbf{X} карбен CH_2 . Уравнение реакции распада: $CH_2N_2 \xrightarrow{h\nu} CH_2 + N_2$.

Первой стадией на представленной схеме является кислотный гидролиз карбида кальция, в его результате образуется ацетилен ($\bf A$). При его восстановлении водородом на палладиевом катализаторе, нанесённом на сульфат бария и отравленном хинолином, образуется этилен ($\bf B$). Отсутствие дальнейшего гидрирования этилена частично можно объяснить тем, что наличие каталитических ядов в системе (в данном случае это могут быть хинолин, ${\rm Pb}^{2+}$ или различные формы серы) ведёт к тому, что этилен хуже адсорбируется на поверхности катализатора. Также отравление препятствует транспорту атомов водорода, растворённого в палладии к поверхности. Поскольку ацетилен восстанавливается адсорбированным водородом, а этилен – растворённым, в данных условиях этилен не может быть каталитически восстановлен водородом. Затем происходит кислотная гидратация этилена, приводящая к этанолу ($\bf C$). Затем действием тионилхлорида на этанол получают хлорэтан ($\bf D$), о чём можно догадаться по материальному балансу, указывающему на побочные продукты реакции.

$$CaC_{2} \xrightarrow{HCl_{(BOJH)}} HC \equiv CH \xrightarrow{H_{2}} H_{2}C = CH_{2} \xrightarrow{H_{2}O} H_{3}PO_{4}/SiO_{2}, t^{,o}C, p \xrightarrow{C} OH \xrightarrow{SOCl_{2}} Cl$$

Хлорэтан затем вводят в реакцию Вюрца, в результате чего можно получить бутан (\mathbf{E}). Его хлорирование на свету приводит к образованию двух продуктов: 1-хлорбутана и 2-хлорбутана. Обработка их спиртовым раствором щёлочи приводит к элиминированию HCl и образованию алкенов. Так как из \mathbf{F}_1 образуется только \mathbf{G}_1 , а из \mathbf{F}_2 и \mathbf{G}_2 (основной), и \mathbf{G}_1 (побочный), зная правило Зайцева, можно сделать вывод о том, что \mathbf{F}_1 1-хлорбутан и \mathbf{G}_1 – бутен-1, а \mathbf{F}_2 – 2-хлорбутан и \mathbf{G}_2 – бутен-2 (\mathbf{F}_2 и \mathbf{G}_2 могут существовать в виде пространственных изомеров). Введение \mathbf{G}_1 и \mathbf{G}_2 в реакцию с диазометаном приводит к образованию соответствующих замещённых циклопропанов \mathbf{H}_1 (этилциклопропан) и \mathbf{H}_2 (1,2-диметилциклопропан). Следует отметить, что \mathbf{H}_2 также может существовать в виде пространственных изомеров (геометрических и оптических).

Структурные формулы веществ $F_2 - H_2$ оцениваются полным баллом без указания стереохимии. Если явно указано, что при образовании F_2 образуется лишь один из оптических изомеров, то 0 б. за структуру (но полный балл за указание на существование пространственных изомеров). При образовании G_2 соотношение (E)- и (Z)-изомеров в смеси продуктов зависит от температуры проведения реакции (как правило, преимущественно образуется (E)-изомер из-за его большей термодинамической устойчивости); указание структурной формулы любого изомера оценивается полным баллом (аналогично для формулы H_2).

$$\begin{array}{c|c}
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline
 & \text{NaOH, C} \\
\hline
 & \text{OL}_2 \\
\hline$$

Для справки на рисунке ниже приведены структурные формулы пространственных изомеров $\mathbf{F}_2 - \mathbf{H}_2$.

СІ СІ Н Н Н Н
$$(S)$$
-2-хлорбутан (R) -3-хлорбутан (R) -2-хлорбутан (R) -3-хлорбутан (R) -4-хлорбутан (R) -4-хлорбутан (R) -2-хлорбутан (R) -3-хлорбутан (R) -3-хлорбутан (R) -3-хлорбутан (R) -4-хлорбутан (R) -3-хлорбутан (R) -3-хлорбу

1.	Нахождение размерности $h-1$ б., верхняя и нижняя границы – по 0.5 б.	$1+2\cdot 0,5=2 6.$
2.	Расчёт длин волн – по 1 б.	$2 \cdot 1 = 2 6.$
3.	Φ ормулы продуктов реакции хлора с метаном – по 0,5 б., верное указание на	$5 \cdot 0, 5 + 2 \cdot 0, 5 + 0, 5 = 4 6.$
	$CH_3Cl\ u\ HCl$ – no 0,5 б., уравнение реакции – 0,5 б.	
4.	Структурные формулы монохлорпроизводных – по 1 б. (за каждую	$4 \cdot 1 + 2 + 2 = 8 6$.
	неправильную структуру -1 б., но не менее 0 б. за вопрос), связь констант k_i	
	$c\ \chi(P_i)/N_i-2\ б.,\ расчёт соотношения -2\ б.$	
5.	Указание верного ряда	2 б.
6.	Ответы для a) (д a + c труктурная формула -1 б.) u б) (нет) $-$ по 0,5 балла	$2 \cdot 0.5 + 1 = 2 6.$
7.	Φ ормулы \pmb{X} и \pmb{Y} – по 0 ,5 б., структурные формулы \pmb{A} – \pmb{E} , \pmb{F}_1 – \pmb{H}_1 и \pmb{F}_2 – \pmb{H}_2 –	$2 \cdot 0.5 + 11 \cdot 1 + 2 \cdot 0.5 = 13 6.$
	по 1 б., пространственная изомерия для $oldsymbol{F_2}$ и $oldsymbol{G_2}$ – по 0 ,5 б.	
	Всего:	33 балла

62-я Всесибирская открытая олимпиада школьников Отборочный этап 2023-2024 уч. года

Решения заланий по химии

Задание 9-1. (авторы И.А. Трофимов, А.С. Романов)

- 1. Основным отличием конструкции классической лампы накаливания от представленной на картинке является <u>наличие внутренней колбы</u> (такая конструкция называется «двойная колба»). Внутрь неё помещают небольшие количества **A** или **B**. По описанию простых веществ можно установить, что **A** представляет собой бром (единственное простое вещество, являющееся жидкостью бурого цвета), **B**, в свою очередь иод (устанавливается по характерному цвету паров простого вещества). Также, зная названия типов ламп, или рассчитав порядковые номера элементов, образующих **A** и **B**, в п. 2, можно заполнить пропуск <...> «галоген».
- **2.** Порядковый номер элемента в составе **A** представим как $\overline{xy} = 10x + y$, тогда порядковый номер элемента в составе $\mathbf{B} \overline{yx} = 10y + x$. Зная, что $\overline{xy} + \overline{yx} = 10(x+y) + (x+y) = 88$, можно получить достаточно простое условие x+y=8. Поскольку x и y это цифры, то x,y>0, следовательно необходимо проверить лишь три пары элементов с порядковыми номерами (17;71), (26;62) и (35;53) этому соответствуют пары элементов (Cl;Lu), (Fe;Sm) и (Br;I). Исходя из описания внешнего вида и агрегатных состояний веществ **A** и **B** при н. у. можно установить, что искомая пара элементов (Br;I), вещества **A бром Br**₂ и **B иод I**₂.

Уравнение реакции [1]: $I_2 + Br_2 \rightarrow 2IBr$, степени окисления $I^{+1}Br^{-1}$.

- **3.** Уравнения реакций [**2–9**]: [**2**] $2Al + 3Br_2 \rightarrow 2AlBr_3$; [**3**] $2Fe + 3Br_2 \rightarrow 2FeBr_3$; [**4, 5**] $2P + 3Br_2 \rightarrow 2PBr_3$, $2P + 5Br_2 \rightarrow 2PBr_5$; [**6**] $Br_2 + 2KOH \xrightarrow{0 \, {}^{\circ}C} KBr + KBrO + H_2O$; [**7**] $3Br_2 + 6KOH \xrightarrow{50 \, {}^{\circ}C} 5KBr + KBrO_3 + 3H_2O$; [**8**] $8NH_3 + 3Br_2 \rightarrow 6NH_4Br + N_2\uparrow$; [**9**] $2Cs_3[Cr(OH)_6] + 3Br_2 + 4CsOH \xrightarrow{t^{\circ}} 2Cs_2CrO_4 + 6CsBr + 8H_2O$.
- **4.** Иод был впервые открыт в 1811 году фабрикантом мыла и селитры Бернаром Куртуа. Определим формулу соли **C**; наиболее вероятно, что тяжёлый элемент это иод (т.к. из неё получают простое вещество **B**), что позволяет найти её формулу: $M(\mathbf{C}) = M(\mathbf{I})/\omega(\mathbf{I}) = 127/0,8467 = 150 г/моль <math>\rightarrow \mathbf{C} \mathbf{uoдид}$ натрия **NaI**. Тогда уравнения реакций: **[10]** 2NaI + Cl₂ \rightarrow 2NaCl + I₂; **[11]** NaI + 3Cl₂ + 3H₂O \rightarrow NaIO₃ + 6HCl.

Установить состав продукта реакции [11] можно по массовой доле: $M_9 = \frac{n \cdot M_r(O)}{\omega(O)} = \frac{16n \ \Gamma/\text{моль}}{0.2424} = 66 \ \Gamma/\text{моль}$. Для того, чтобы в молярную массу продукта уложилась масса хотя бы одного эквивалента иода должно выполняться условие $n \ge 3$; при n = 3 имеем $M_9 = 198 \ \Gamma/\text{моль} = 3 \cdot 16 + 127 + 23 \rightarrow \phi$ ормула продукта **NaIO**₃.

- **5.** Всего в 72 млн ламп содержится $11 \text{ мг} \cdot 72 \cdot 10^6 = 7,92 \cdot 10^8 \text{ мг} = 7,92 \cdot 10^5 \text{ г иода}$. В 1 л буровой воды иода (как элемента!) содержится $C(\text{NaI}) \cdot M(\text{I}) \cdot 1$ л = $2,5 \cdot 10^{-4}$ моль/л·127 г/моль·1 л = 0,03175 г. Теперь, поделив массу иода в лампах на массовую концентрацию (г/л), найдём искомый объём буровой воды: $m_{\text{ламп}}(\text{I}_2)/C_{\text{m}}(\text{I}) \approx 25 \cdot 10^6 \text{ л} = 25 \cdot 10^3 \text{ м}^3$.
- **6.** В галогенной лампе нить накаливания окружена иодом или бромом, которые реагируют с конденсировавшимся на стенках лампы вольфрамом, тем самым препятствуя его отложению на колбе. Причём этот процесс обратим, и полученные соединения вольфрама вновь распадаются на атомы на нити накаливания под действием высокой температуры. В результате вольфрам возвращается на нить накаливания, что в конечном счёте и продлевает срок службы лампы.

Формула вещества $\mathbf{D} - \mathbf{WBr_5}$, что подтверждается расчётом по массовой доле: $M(\mathbf{D}) = M(\mathbf{W})/\omega(\mathbf{W}) = 184/0,3151 = 584 \, \text{г/моль} = 184 + 5 \cdot 80$.

7. Установим формулы веществ **E** и **F**: $M(\mathbf{E}) = M(\mathbf{C})/\omega(\mathbf{C}) = 12/0,1263 = 95$ г/моль = 12 + 80 + 3; $M(\mathbf{F}) = M(\mathbf{C})/\omega(\mathbf{C}) = 12/0,0690 = 174$ г/моль = $12 + 2 \cdot 80 + 2$. Различия в 3 и 2 г/моль объясняются наличием атомов водорода (можно установить, т.к. известна информация о получении **E** и **F** из метана), тогда **E** – **бромметан CH₃Br** и **F** – **дибромметан CH₂Br₂**.

Всего в 72 млн лампах содержится $n(Br) = (7 \text{ мг} \cdot 72 \cdot 10^6)/(80 \text{ г/моль}) = 6,3 \cdot 10^3$ моль атомов брома. Так как в лампе CH_3Br и CH_2Br_2 находятся в мольном соотношении 1:4, можно найти минимальное количество метана, из которого можно произвести достаточное количество такой смеси: $5CH_4 + 9Br_2 \rightarrow CH_3Br + 4CH_2Br_2 + 9HBr \rightarrow n(CH_4) = 5n(CH_3Br) = 5 \cdot (1/9)n(Br) = 5/9 \cdot 6,3 \cdot 10^3$ моль $= 3,5 \cdot 10^3$ моль метана. Тогда объём попутного нефтяного газа равен: $V(\Pi.\Gamma.) = n(\Pi.\Gamma.) \cdot V_M = n(CH_4)/\chi(CH_4) \cdot V_M = 3,5 \cdot 10^3$ моль/0,64 · 22,4 л/моль $= 1,225 \cdot 10^5$ л = 122,5 м³. Учитывая, что в России утилизируют путём сжигания десятки миллиардов кубометров попутного нефтяного газа в год, такое количество является ничтожным (а представьте, сколько всего можно было бы произвести, если бы его не сжигали?).

1.	Указание на двойную колбу и «галоген» – no 1 б.	1+1=2 6.
2.	Пара элементов – 1 б., формулы A и B – по 1 б., уравнение реакции $[1]$ – 1 б.,	$1+2\cdot 1+1+2\cdot 0,5=66$.

	степени окисления – по 0,5 б.	
3.	Уравнения реакций [2–9] – no 1 б.	8·1= 8 б.
4.	Подтверждённая формула соли C и уравнения реакций [$10,11$] – по 1 б.	$1+2\cdot 1=3 \ 6.$
5.	Расчёт объёма буровой воды – 4 б.	4 б.
6.	O бъяснение и формула $m{D}$ – no 1 б.	1+1=2 6.
7.	Φ ормулы $m{E}$ и $m{F}$ – no 1 б., расчёт объёма ПНГ – 4 б.	$2 \cdot 1 + 4 = 6 6$.
	Всего:	31 балл

Задание 9-2. (авторы А.С. Романов, И.А. Трофимов)

1. Газоразрядные лампы используются для <u>наружного</u> освещения улиц и <u>внутреннего</u> освещения помещений, в <u>автомобильных фарах</u>, подводных <u>фонарях</u>, а также в <u>декоративном</u> освещении. Цветовая температура характеризует <u>цвет абсолютно черного тела</u>, нагретого до этой температуры. В быту цветовая температура характеризует тон, цвет и <u>«горячесть» источника света</u>, например свет с температурой 3000 К будет тёплым, а с увеличением температуры будет более холодным. Цветовую температуру солнечного излучения можно рас-

считать по формуле Стефана-Больцмана: $T = \sqrt[4]{\frac{6,3\cdot10^7}{5,67\cdot10^{-8}}} = 5774$ К. Отметим, что эта температура очень близ-ка к реальной температуре поверхности Солнца, поэтому его можно с хорошей точностью считать абсолютно черным телом.

2. Определим газ A_3 : $M(A_3) = M(N)/\omega(N) = 14$ г/моль/0,8235 = 17 г/моль = $14 + 3 \cdot 1$; A_3 – аммиак NH_3 . Так как он образован взаимодействием простых веществ A и C, то они представляют собой азот N_2 и водород H_2 . Если C – это азот, то молярная масса бурого газа окажется равна 644 г/моль; если C – это водород, то молярная масса бурого газа окажется равна 46 г/моль. Реалистичен только второй вариант, значит, $A - N_2$ азот и $C - H_2$ водород. Наконец, определим вещество B: $M(B) = m(B) \cdot N_A = 5,32 \cdot 10^{-23} \, \Gamma \cdot 6,02 \cdot 10^{23} \, \text{моль}^{-1} = 32,0 \, \text{г/моль}$; значит, $B - \kappa$ ислород O_2 . При пропускании разряда через смесь азота и кислорода образуется оксид азота(II) $NO - A_1$. При температуре ниже 500 °C оксид азота(II) взаимодействует с кислородом с образованием бурого газа – оксида азота(IV) $NO_2 - A_2$.

Уравнения реакций [1–4]: [1] $N_2 + O_2 \rightleftharpoons 2NO$, [2] $2NO + O_2 \rightarrow 2NO_2$; [3] $4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$; [4] $N_2 + 3H_2 \rightleftharpoons 2NH_3$.

Рассчитаем массу аммиака, которая будет приходиться на раствор, содержащий $1000 \, \Gamma$ воды: $x/(1000+x) = 0,428 \rightarrow x = 748,25 \, \Gamma$ аммиака. Значит в 1 литре воды растворяется 748,25/17 = 44,01 моль или $44,01\cdot22,4 = 985,8$ л аммиака можно растворить в 1 л воды при $0\,^{\circ}$ С и нормальном давлении аммиака.

Рассчитаем концентрацию азотной кислоты: $\omega(\text{HNO}_3) = \text{m}(\text{HNO}_3)/[\text{m}(\text{NO}_2)+\text{m}(\text{O}_2)+\text{m}(\text{H}_2\text{O})] = \text{n}(\text{NO}_2)\cdot\text{M}(\text{HNO}_3)/[\text{m}(\text{NO}_2)+\text{m}(\text{O}_2)+\text{m}(\text{H}_2\text{O})] = \text{m}(\text{NO}_2)/\text{M}(\text{NO}_2)\cdot\text{M}(\text{HNO}_3)/[\text{m}(\text{NO}_2)+\text{n}(\text{NO}_2)\cdot\text{M}(\text{O}_2)/4+\text{m}(\text{H}_2\text{O})] = 26,087 \text{ моль} \cdot 63 \text{ г/моль}/[1200 \text{ г} + 208,70 \text{ г} + 1000 \text{ г}] = 68,21\%.$

При полной нейтрализации азотной кислоты происходит реакция [5]: $HNO_3 + NaOH \rightarrow NaNO_3 + H_2O$. Так как в ходе этой реакции образуется вода, рассчитаем её общую массу в растворе после проведения реакции:

Часть воды прореагировала в реакции [3], её там осталось не $1000 \, \Gamma$, а $m(H_2O) = 1000 - 0.5 \cdot 26,087 \cdot 18 = 765,2 \, \Gamma$.

Итого масса воды в растворе: $m(H_2O) = m_0(H_2O) + \Delta m(H_2O) = 765,2 + 26,087 \cdot 18 = 1234,8$ г. В таком количестве воды можно растворить 1234,8 г·91,6 г/100 г = **1131,1** г нитрата натрия. Масса образующегося в реакции [5] нитрата натрия равна $n(HNO_3) \cdot M(NaNO_3) = 26,087$ моль·85 г/моль = **2217,4** г. Так как 2217,4 г > 1131,1 г, <u>нитрат натрия выпадет в осадок</u>.

3. Белый осадок является солью кальция, следовательно, газ \mathbf{D} – кислотный оксид. Установим молярную массу осадка: $\mathbf{M}(\text{осадка}) = \mathbf{m}(\text{осадка})/\mathbf{n}(\text{осадка}) = x \cdot \mathbf{m}(\text{осадка})/\mathbf{n}(\mathbf{D}) = x \cdot \mathbf{m}(\text{осадка})/(\mathbf{V}(\mathbf{D})/\mathbf{V}_{\mathrm{M}}) = 99,9x \approx 100x \, \text{г/моль}.$ При x=1 на анион приходится 60 г/моль, что соответствует карбонат-иону $\mathbf{CO_3}^{2-}$. Действительно, карбонат кальция $\mathbf{CaCO_3} - \mathbf{D_1}$ нерастворим в воде; тогда газ $\mathbf{D} - \mathbf{yг}$ лекислый газ $\mathbf{CO_2}$. Карбонат кальция растворяется при пропускании избытка углекислого газа с образованием гидрокарбоната кальция $\mathbf{Ca}(\mathbf{HCO_3})_2 - \mathbf{D_2}$. На углекислый газ также указывает описание реакции [8], где говорится об образовании ядовитого угарного газа $\mathbf{CO} - \mathbf{D_3}$ при реакции \mathbf{D} с углём.

Уравнения реакций [6–10]:

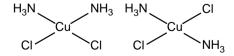
- [6] $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$; [7] $CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$; [8] $CO_2 + C \rightarrow 2CO$;
- [9] $5CO + I_2O_5 \rightarrow I_2 + 5CO_2$; [10] $PdCl_2 + CO + H_2O \rightarrow Pd \downarrow + CO_2 + 2HCl$.
- В 50,0 мг палладия содержится 0,4717 ммоль палладия, тогда масса угарного газа равна m(CO) = $n(CO) \cdot M(CO) = n(Pd) \cdot M(CO) = 0,4717$ ммоль $\cdot 28$ г/моль = 13,21 мг, что соответствует ПДК в 13,21/0,6605 = **20** мг/м³ угарного газа.
- **4.** Формулы веществ $\mathbf{D_4} \mathbf{D_6}$: $\mathbf{D_4} \mathbf{CO(NH_2)_2}$ мочевина, $\mathbf{D_5} (\mathbf{NH_4)_2CO_3}$, $\mathbf{D_6} \mathbf{HCN}$. Уравнения реакций [11–14]: [11] $2\mathrm{NH_3} + \mathrm{CO_2} \to \mathrm{H_2O} + \mathrm{CO(NH_2)_2}$; [12] $2\mathrm{NH_3} + \mathrm{CO_2} + \mathrm{H_2O} \to (\mathrm{NH_4)_2CO_3}$ (или $\mathrm{NH_4HCO_3}$); [13] $\mathrm{CO_2} + 4\mathrm{H_2} \xrightarrow{Ni, \ t^\circ} \mathrm{CH_4} + 2\mathrm{H_2O}$; [14] $2\mathrm{CH_4} + 2\mathrm{NH_3} + 3\mathrm{O_2} \xrightarrow{Pt, \ t^\circ} 2\mathrm{HCN} + 6\mathrm{H_2O}$.

При проведении реакции [14] поддержание высокой температуры осуществляется благодаря побочному процессу горения смеси метана с кислородом *in situ*.

5. Запишем уравнение реакции сгорания смеси в общем виде: G + H + 4NaOH + xO₂ $\rightarrow I + 2$ H₂O.

Пусть количества веществ **G** и **H** равны по 1 моль, тогда молярную массу **I** можно представить в виде $M(\mathbf{I}) = M(\mathbf{G}) + M(\mathbf{H}) + 2M(\mathrm{Na}_2\mathrm{O}) + 32x$. Получаем уравнение на привес массы: $M(\mathbf{I})/(M(\mathbf{G}) + M(\mathbf{H}) + 4M(\mathrm{Na}\mathrm{OH})) = 1,03461 \rightarrow 32x = 0,03461(M(\mathbf{G}) + M(\mathbf{H})) + 41,54$. Сумма молярных масс искомых веществ скорее всего является целым числом, как и коэффициент x перед O_2 в уравнении реакции. Отсюда простым перебором при x = 2 получаем $M(\mathbf{G}) + M(\mathbf{H}) = 649$ г/моль. Желтый цвет пламени говорит о том, что скорее всего $\mathbf{E} - \mathbf{Na}$, тогда формулы искомых веществ представимы в виде $\mathbf{G} - \mathrm{Na} \mathcal{G}_n$, $\mathbf{H} - \mathrm{Na} \mathcal{G}_m$, где $\mathcal{G} - \mathrm{9}$ лемент, образующий простое вещество \mathbf{F} , а n и m это индексы в соответствующих формулах, которые пока могут принимать как целые, так и дробные значения (например, если $\mathbf{G} - \mathrm{Na}_3\mathcal{G}_n$, то n = 1/3). Запишем уравнение: $M(\mathbf{G}) + M(\mathbf{H}) = 46 + (n + m)M(\mathcal{G}) = 649 \rightarrow M(\mathcal{G}) = M(\mathbf{F}) = 603/(n + m)$. Заметим, что почти наверняка сумма $n + m \geq 3$, так как при меньших значениях суммы молярная масса \mathbf{F} получается слишком большой. Как раз при n + m = 3 получаем $M(\mathbf{F}) = 201$ г/моль и $\mathbf{F} - \mathbf{Hg}$. Суммарно 1 моль \mathbf{G} и 1 моль \mathbf{H} содержат 3 моль атомов ртути и два моль атомов натрия, тогда $\mathbf{I} - \mathrm{Na}_2\mathrm{HgO}_2$. Также засчитывается как правильная и формула $\mathbf{I} - \mathrm{Na}_6\mathrm{Hg}_3\mathrm{O}_6$. Единственный вариант формул искомых веществ это $\mathbf{G} - \mathrm{NaHg}$, $\mathbf{H} - \mathrm{NaHg}_2$.

Система оценивания:


1.	Две области применения – по 0.5 б., расчёт – 1 б., цветовая температура 1 б.	$2 \cdot 0.5 + 1 + 1 = 3 6.$
2.	$iggle$ Формулы A_1 – A_3 , A – C – no l б., уравнения реакций $[1 extsf{-}5]$ – no l б., расчёт	$6 \cdot 1 + 5 \cdot 1 + 2 + 2 + 2 = 17 \delta.$
	объёма аммиака – 2 б., массовой доли азотной кислоты – 2 б., выпадение	
	осадка с расчётом – 2 б. (не учтена дополнительная H_2O – 1 б., без расчёта –	
	0 δ.)	
3.	Формулы D , D_1 – D_3 – no 1 б., уравнения реакций [6–10] – no 1 б., ПДК угарного	1.4+5.1+2=11 6.
	газа – 2 б.	
4.	Формулы веществ D_4 – D_6 , Уравнения реакций [11–14] и ответ на вопрос – по	$3 \cdot 1 + 4 \cdot 1 + 1 = 8 6$.
	1 б.	
5 .	Φ ормулы веществ $E-I$ – no 2 б.	5.2 = 10 6.
	Всего:	49 баллов

Задание 9-3. (автор А.С. Чубаров)

1. $Na[Al(OH)_4]$ — тетрагидроксоалюминат натрия. **1** — внутренняя сфера; **2** — внешняя сфера; **3** — центральный атом (металл комплексообразователь); **4** — лиганд; **5** — координационное число.

Уравнения реакций [1]-[9]: [1] $AlCl_3 + 3NaOH = 3NaCl + Al(OH)_3$; [2] $Al(OH)_3 + NaOH = Na[Al(OH)_4]$;

- [3] $4NaOH_{(изб.)} + AlCl_3 = Na[Al(OH)_4] + 3NaCl;$ при таком порядке добавления гидроксид-ион изначально находится в избытке; по этой причине гидроксид алюминия не успевает сформировать осадок (сразу же растворяется) ответ на вопрос из текста задания; [4] $Na[Al(OH)_4] + 4HCl_{(изб.)} = NaCl + AlCl_3 + 4H_2O;$
- $\textbf{[5]} \ \ Na[Al(OH)_4] + CO_{2(\mu_{36}.)} = NaHCO_3 + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_2O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_4O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_3 + H_4O + Al(OH)_3; \\ \textbf{[6]} \ \ Na[Al(OH)_4] + NH_4Cl_{(\mu_{36})} = NaCl + NH_4Cl_{(\mu_$
- [7] Na[Al(OH)₄] $\xrightarrow{t,^{\circ}C}$ NaAlO₂ + 2H₂O; [8] FeCl₃ + 6KSCN = K₃[Fe(SCN)₆] + 3KCl, возможны K₂[Fe(H₂O)(SCN)₅], K[Fe(H₂O)₂(SCN)₄], [Fe(H₂O)₃(SCN)₃]; Fe(SCN)₃ не подходит, так как не является комплексной солью;
- [9] $FeCl_3 + K_4[Fe(CN)_6] = KFe[Fe(CN)_6] + 3KCl$ (возможен вариант $Fe_4[Fe(CN)_6]_3$);
- **2.** Уравнения реакций [10]-[13]: [10] $2Cu + 8HCl_{KOHII., 1136.} + O_2 = 2H_2[CuCl_4] + 2H_2O;$ [11] $I_2 + KI = K[I_3];$
- $\textbf{[12]} \ AgCl + 2NH_3 = [Ag(NH_3)_2]Cl; \\ \textbf{[13]} \ 2MnSO_4 + H_2O_2 + 12KCN = 2K_3[Mn(CN)_6] + 2K_2SO_4 + 2KOH; \\ \textbf{(12)} \ AgCl + 2NH_3 = [Ag(NH_3)_2]Cl; \\ \textbf{(13)} \ 2MnSO_4 + H_2O_2 + 12KCN = 2K_3[Mn(CN)_6] + 2K_2SO_4 + 2KOH; \\ \textbf{(14)} \ AgCl + 2NH_3 = [Ag(NH_3)_2]Cl; \\ \textbf{(15)} \ AgCl + 2NH_3 = [Ag(NH_3)_2]Cl; \\ \textbf{(15)} \ AgCl + 2NH_3 = [Ag(NH_3)_2]Cl; \\ \textbf{(16)} \ AgCl + 2NH_3 = [Ag(NH_3)_2]Cl; \\ \textbf{(17)} \ AgCl + 2NH_3 = [Ag(NH_3)_2]Cl; \\ \textbf{(17)} \ AgCl + 2NH_3 = [Ag(NH_3)_2]Cl; \\ \textbf{(18)} \ AgCl + 2NH_3 = [Ag(NH_3)_2]Cl; \\ \textbf{(18$
- **3.** Пространственное строение цис- и транс-изомеров $[Cu(NH_3)_2Cl_2]$ (геометрия квадрат):

4. Хлорид **A** имеет формулу \mathbf{X} Cl_n, причем W_X = 45,38 %, тогда $M_X/(M_X+35,5n)=0,4538$, M_X = 29,49n. При n=2 M_X = 59, металл \mathbf{X} = Co или Ni. По нечетному числу протонов в ядре и цветовой гамме подходит кобальт (оттенки розового для соединений). Синий $CoCl_2$ (хлорид кобальта(II)) поглощает воду из влажного воздуха, образуя кристаллогидрат $CoCl_2*nH_2O$. Зная, что W(Co) = 24,8 %, составим уравнение 59/(59+71+18n) = 0,248, откуда получим n = 6 и состав \mathbf{B} $CoCl_2*6H_2O$ – гексагидрат хлорида кобальта(II) или $[Co(H_2O)_6]Cl_2$ – хлорид гексааквакобальта(II).

При взаимодействии $CoCl_2$ с газообразным аммиаком образуются аммиачные комплексы $CoCl_2*nNH_3$. С учетом W(Cl) = 30,6 % составим уравнение 71/(59+71+17n) = 0,306, откуда получим n = 6 и состав C $CoCl_2*6NH_3$ или $[Co(NH_3)_6]Cl_2$ – хлорид гексаамминкобальта(II).

Получение вещества \mathbf{D} осуществляется в водном растворе в присутствии кислорода, что наводит на мысль о возможном окислении кобальта до степени окисления +3. В связи с этим в состав комплекса для нейтрализации заряда должно входить три хлорид-иона. С учетом W(Cl) = 42,5 %, получим, что $\mathbf{D} - \text{CoCl}_3*5\text{NH}_3$ или $[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2$ – хлорид хлоропентаамминкобальта(III). Один хлорид-ион войдет во внутреннюю сферу для сохранения КЧ 6. Это подтверждается тем, что нитрат серебра осаждает только два эквивалента хлорид-ионов.

Соединение **B** ([Co(H_2O)₆]Cl₂ или CoCl₂*6 H_2O) относится к кристаллогидратам или аквакомплексам. В нем молекулы воды связаны с катионом Co³⁺ ковалентными связями, образующимися по донорно-акцепторному механизму (донор – атом кислорода, акцептор – катион металла).

Уравнения реакций [14]-[18]: [14] $CoCl_2 + 6H_2O = CoCl_2*6H_2O$ ([$Co(H_2O)_6$] Cl_2);

- [15] $CoCl_2 + 6NH_{3(ra3)} = [Co(NH_3)_6]Cl_2$; [16] $[Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6](NO_3)_2$;
- [17] $4\text{CoCl}_2 + 16\text{NH}_3 + \text{O}_2 + 4\text{NH}_4\text{Cl} = 4[\text{Co(NH}_3)_5\text{Cl}]\text{Cl}_2 + 2\text{H}_2\text{O};$
- [18] $[Co(NH_3)_5Cl]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_5Cl](NO_3)_2$.

1. Название Na[Al(OH) ₄] и частей комплекса 1-5 по 1 б., избыток гидроксид-иона 1 б.	1*6+1=76.
1-2. Уравнения реакций [1]-[13] no 1 б.	1*13 = 13 б.
3. Строение изомеров [$Cu(NH_3)_2Cl_2$] по 1 б.	1*2 = 2 6.
4. Формулы веществ X , A - D , по 1 б., названия A - D , тип B , донорно-акцепторный	1*5+1*6+1*5=16 6.
механизм по 1 б. Уравнения реакций [14]-[18] по 1 б.	
Всего:	38 баллов

62-я Всесибирская открытая олимпиада школьников Отборочный этап 2023-2024 уч. года

Решения заланий по химии

Задание 8-1. (авторы И.А. Трофимов, А.С. Романов)

- 1. Основным отличием конструкции классической лампы накаливания от представленной на картинке является наличие внутренней колбы (такая конструкция называется «двойная колба»). Внутрь неё помещают небольшие количества **A** или **B**. По описанию простых веществ можно установить, что **A** представляет собой бром (единственное простое вещество, являющееся жидкостью бурого цвета), **B**, в свою очередь иод (устанавливается по характерному цвету паров простого вещества). Также, зная названия типов ламп, или рассчитав порядковые номера элементов, образующих **A** и **B**, в п. 2, можно заполнить пропуск <...> «<u>галоген</u>».
- **2.** Порядковый номер элемента в составе **A** представим как $\overline{xy} = 10x + y$, тогда порядковый номер элемента в составе $\mathbf{B} \overline{yx} = 10y + x$. Зная, что $\overline{xy} + \overline{yx} = 10(x+y) + (x+y) = 88$, можно получить достаточно простое условие x + y = 8. Поскольку x и y -это цифры, то x, y > 0, следовательно необходимо проверить лишь три пары элементов с порядковыми номерами (17;71), (26;62) и (35;53) этому соответствуют пары элементов (Cl;Lu), (Fe;Sm) и (Br;I). Исходя из описания внешнего вида и агрегатных состояний веществ **A** и **B** при н. у. можно установить, что искомая пара элементов (Br;I), вещества **A бром Br**₂ и **B иод I**₂.

Уравнение реакции [1]: $I_2 + Br_2 \rightarrow 2IBr$, степени окисления $I^{+1}Br^{-1}$.

3. Уравнения реакций [2–7]: [2] $2Al + 3Br_2 \rightarrow 2AlBr_3$; [3] $2Fe + 3Br_2 \rightarrow 2FeBr_3$; [4, 5] $2P + 3Br_2 \rightarrow 2PBr_3$,

$$2P + 5Br_2 \rightarrow 2PBr_5; \textbf{[6]} \ 2Br_2 + HgO \xrightarrow{0 \ ^{\circ}C} Br_2O + HgBr_2; \textbf{[7]} \ Br_2 + 4O_3 \xrightarrow{-50 \ ^{\circ}C, \ \textit{CFCl}_3} 2BrO_2 + 4O_2.$$

Молекулы, содержащие нечётное количество электронов в своём составе (как следствие, содержат один неспаренный электрон), называются радикалами. Стоит отметить, что молекулы, содержащие чётное количество электронов, также могут содержать в составе неспаренные электроны (например, если неспаренные электроны находятся на двух атомах).

4. Иод был впервые открыт в 1811 году фабрикантом мыла и селитры Бернаром Куртуа. Определим формулу соли **C**: $M(\mathbf{C}) = M(\mathrm{Na})/\omega(\mathrm{Na}) = 23/0,1533 = 150 г/моль <math>\rightarrow \mathbf{C} - \mathbf{uoдид}$ натрия **NaI**. Тогда уравнения реакций: [8] $2\mathrm{NaI} + \mathrm{Cl}_2 \rightarrow 2\mathrm{NaCl} + \mathrm{I}_2$; [9] $\mathrm{NaI} + 3\mathrm{Cl}_2 + 3\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{NaIO}_3 + 6\mathrm{HCl}$.

Установить состав продукта реакции [9] можно по массовой доле: $M_9 = \frac{n \cdot M_r(0)}{\omega(0)} = \frac{16n \, \epsilon / \text{моль}}{0.2424} = 66 \, \epsilon / \text{моль}$. Для того, чтобы в молярную массу продукта уложилась масса хотя бы одного эквивалента иода должно выполняться условие $n \ge 3$; при n = 3 имеем $M_9 = 198 \, \epsilon / \text{моль} = 3 \cdot 16 + 127 + 23 \rightarrow \phi$ ормула продукта $\mathbf{NaIO_3}$.

- **5.** Всего в 72 млн ламп содержится $11 \text{ мг} \cdot 72 \cdot 10^6 = 7,92 \cdot 10^8 \text{ мг} = \mathbf{7,92} \cdot \mathbf{10^5} \text{ г иода}$. В 1 л буровой воды иода (как элемента!) содержится $C(\text{NaI}) \cdot M(\text{I}) \cdot 1$ л = $2,5 \cdot 10^{-4}$ моль/л·127 г/моль·1 л = $\mathbf{0,03175}$ г. Теперь, поделив массу иода в лампах на массовую концентрацию (г/л), найдём искомый объём буровой воды: $m_{\text{ламп}}(\text{I}_2)/C_{\text{m}}(\text{I}) \approx 25 \cdot 10^6 \text{ л} = \mathbf{25 \cdot 10^3 m}^3$.
- 6. В галогенной лампе нить накаливания окружена иодом или бромом, которые реагируют с конденсировавшимся на стенках лампы вольфрамом, тем самым препятствуя его отложению на колбе. Причём этот процесс обратим, и полученные соединения вольфрама вновь распадаются на атомы на нити накаливания под действием высокой температуры. В результате вольфрам возвращается на нить накаливания, что в конечном счёте и продлевает срок службы лампы.

Формула вещества $\mathbf{D} - \mathbf{WBr_5}$, что подтверждается расчётом по массовой доле: $M(\mathbf{D}) = M(\mathbf{W})/\omega(\mathbf{W}) = 184/0,3151 = 584$ г/моль = 184 + 5.80.

7. Установим формулы веществ **E** и **F**: $M(\mathbf{E}) = M(C)/\omega(C) = 12/0,1263 = 95$ г/моль = 12 + 80 + 3; $M(\mathbf{F}) = M(C)/\omega(C) = 12/0,0690 = 174$ г/моль = $12 + 2 \cdot 80 + 2$. Различия в 3 и 2 г/моль объясняются наличием атомов водорода (можно установить, т.к. известна информация о получении **E** и **F** из метана), тогда **E** – **бромметан CH₃Br** и **F** – дибромметан CH₂Br₂.

Всего в 72 млн лампах содержится $n(Br) = (7 \text{ мг} \cdot 72 \cdot 10^6)/(80 \text{ г/моль}) = \mathbf{6,3 \cdot 10^3}$ моль атомов брома. Так как в лампе CH_3Br и CH_2Br_2 находятся в мольном соотношении 1:4, можно найти минимальное количество метана, из которого можно произвести достаточное количество такой смеси: $5CH_4 + 9Br_2 \rightarrow CH_3Br + 4CH_2Br_2 + 9HBr \rightarrow n(CH_4) = 5n(CH_3Br) = 5 \cdot (1/9)n(Br) = 5/9 \cdot 6,3 \cdot 10^3$ моль $= 3,5 \cdot 10^3$ моль метана. Тогда объём попутного нефтяного газа равен: $V(\pi.r.) = n(\pi.r.) \cdot V_M = n(CH_4)/\chi(CH_4) \cdot V_M = 3,5 \cdot 10^3$ моль/0,64 · 22,4 л/моль $= 1,225 \cdot 10^5$ л = 122,5 м³. Учитывая, что в России утилизируют путём сжигания десятки миллиардов кубометров попутного

нефтяного газа в год, такое количество является ничтожным (а представьте, сколько всего можно было бы произвести, если бы его не сжигали?).

Система оценивания:

1.	Указание на двойную колбу и «галоген» – no 1 б.	1+1=2 6.
2.	Пара элементов – 1 б., формулы A и B – no 1 б., уравнение реакции $[1]$ – 1 б.,	$1+2\cdot 1+1+2\cdot 0,5=5$ 6.
	степени окисления — no 0.5 б.	
3.	Уравнения реакций [2–7] – по 1 б., название «радикалы» – 1 б.	$6 \cdot 1 + 1 = 7 6$.
4.	Подтверждённая формула соли $m{C}$ и уравнения реакций $m{[8,9]}$ – по 1 б.	$1+2\cdot 1=3 6.$
5.	Расчёт объёма буровой воды – 4 б.	4 б.
6.	Объяснение и формула $oldsymbol{D}$ – no 1 б.	1+1=2 6.
7.	Φ ормулы E и F – no 1 б., расчёт объёма $\Pi H \Gamma$ – 4 б.	$2 \cdot 1 + 4 = 6 6$.
	Всего:	29 баллов

Задание 8-2. (авторы А.С. Романов, И.А. Трофимов)

1. Газоразрядные лампы используются для <u>наружного</u> освещения улиц и <u>внутреннего</u> освещения помещений, в <u>автомобильных фарах</u>, подводных <u>фонарях</u>, а также в <u>декоративном</u> освещении. Цветовая температура характеризует <u>пвет абсолютно черного тела</u>, нагретого до этой температуры. В быту цветовая температура характеризует тон, цвет и «горячесть» источника света, например свет с температурой 3000 К будет тёплым, а с увеличением температуры будет более холодным. Цветовую температуру солнечного излучения можно рас-

считать по формуле Стефана-Больцмана: $T = \sqrt[4]{\frac{6,3\cdot 10^7}{5,67\cdot 10^{-8}}} = 5774$ К. Отметим, что эта температура очень близ-ка к реальной температуре поверхности Солнца, поэтому его можно с хорошей точностью считать абсолютно черным телом.

2. Определим газ A_3 : $M(A_3) = M(N)/\omega(N) = 14$ г/моль/0,8235 = 17 г/моль = $14 + 3 \cdot 1$; A_3 – аммиак NH_3 . Так как он образован взаимодействием простых веществ A и C, то они представляют собой азот N_2 и водород H_2 . Если C – это азот, то молярная масса бурого газа окажется равна 644 г/моль; если C – это водород, то молярная масса бурого газа окажется равна 46 г/моль. Реалистичен только второй вариант, значит, $A - N_2$ азот и $C - H_2$ водород. Наконец, определим вещество B: $M(B) = m(B) \cdot N_A = 5,32 \cdot 10^{-23} \, \text{г} \cdot 6,02 \cdot 10^{23}$ моль $^{-1} = 32,0$ г/моль; значит, $B - \kappa$ ислород O_2 . При пропускании разряда через смесь азота и кислорода образуется оксид азота(II) $NO - A_1$. При температуре ниже 500 °C оксид азота(II) взаимодействует с кислородом с образованием бурого газа – оксида азота(IV) $NO_2 - A_2$.

Уравнения реакций [1–4]: [1] $N_2 + O_2 \rightleftharpoons 2NO$, [2] $2NO + O_2 \rightarrow 2NO_2$; [3] $4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$; [4] $N_2 + 3H_2 \rightleftarrows 2NH_3$.

Рассчитаем массу аммиака, которая будет приходиться на раствор, содержащий $1000 \, \Gamma$ воды: $x/(1000+x) = 0,428 \rightarrow x = 748,25 \, \Gamma$ аммиака. Значит в 1 литре воды растворяется 748,25/17 = 44,01 моль или $44,01\cdot22,4 = 985,8$ л аммиака можно растворить в 1 л воды при 0 °C и нормальном давлении аммиака.

Рассчитаем концентрацию азотной кислоты: $\omega(\text{HNO}_3) = \text{m}(\text{HNO}_3)/[\text{m}(\text{NO}_2) + \text{m}(\text{O}_2) + \text{m}(\text{H}_2\text{O})] = \text{n}(\text{NO}_2) \cdot \text{M}(\text{HNO}_3)/[\text{m}(\text{NO}_2) + \text{m}(\text{O}_2) + \text{m}(\text{H}_2\text{O})] = \text{m}(\text{NO}_2)/\text{M}(\text{NO}_2) \cdot \text{M}(\text{HNO}_3)/[\text{m}(\text{NO}_2) + \text{n}(\text{NO}_2) \cdot \text{M}(\text{O}_2) / 4 + \text{m}(\text{H}_2\text{O})] = 26,087 \text{ моль} \cdot 63 \text{ г/моль}/[1200 \text{ г} + 208,70 \text{ г} + 1000 \text{ г}] = \textbf{68,21\%}.$

При полной нейтрализации азотной кислоты происходит реакция [5]: $HNO_3 + NaOH \rightarrow NaNO_3 + H_2O$. Так как в ходе этой реакции образуется вода, рассчитаем её общую массу в растворе после проведения реакции:

Часть воды прореагировала в реакции [3], её там осталось не $1000 \, \Gamma$, а m(H₂O)= $1000 - 0.5 \cdot 26,087 \cdot 18 = 765,2 \, \Gamma$.

Вода образуется в реакции [5], итого масса воды в растворе: $m(H_2O) = m_0(H_2O) + \Delta m(H_2O) = 765,2 + 26,087 \cdot 18 = 1234,8$ г. В таком количестве воды можно растворить 1234,8 г·91,6 г/100 г = **1131,1** г нитрата натрия. Масса образующегося в реакции [5] нитрата натрия равна $n(HNO_3) \cdot M(NaNO_3) = 26,087$ моль ·85 г/моль = **2217,4** г. Так как 2217,4 г > 1131,1 г, <u>нитрат натрия выпадет в осадок</u>.

3. Белый осадок является солью кальция, следовательно, газ \mathbf{D} – кислотный оксид. Установим молярную массу осадка: $\mathbf{M}(\text{осадка}) = \mathbf{m}(\text{осадка})/\mathbf{n}(\text{осадка}) = x \cdot \mathbf{m}(\text{осадка})/\mathbf{n}(\mathbf{D}) = x \cdot \mathbf{m}(\text{осадка})/(\mathbf{V}(\mathbf{D})/\mathbf{V}_{\mathrm{M}}) = 99,9x \approx 100x \ \mathrm{г/моль}.$ При x=1 на анион приходится 60 г/моль, что соответствует карбонат-иону $\mathbf{CO_3}^{2-}$. Действительно, карбонат кальция $\mathbf{CaCO_3} - \mathbf{D_1}$ нерастворим в воде; тогда газ $\mathbf{D} - \mathbf{yг}$ лекислый газ $\mathbf{CO_2}$. Карбонат кальция растворяется при пропускании избытка углекислого газа с образованием гидрокарбоната кальция $\mathbf{Ca}(\mathbf{HCO_3})_2 - \mathbf{D_2}$. На углекислый газ также указывает описание реакции [8], где говорится об образовании ядовитого угарного газа $\mathbf{CO} - \mathbf{D_3}$ при реакции \mathbf{D} с углём.

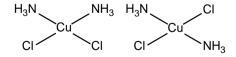
Уравнения реакций [6–10]:

[6] $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$; [7] $CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$; [8] $CO_2 + C \rightarrow 2CO$;

[9] $5CO + I_2O_5 \rightarrow I_2 + 5CO_2$; [10] $PdCl_2 + CO + H_2O \rightarrow Pd\downarrow + CO_2 + 2HCl$.

- В 50,0 мг палладия содержится 0,4717 ммоль палладия, тогда масса угарного газа равна $m(CO) = n(CO) \cdot M(CO) = n(Pd) \cdot M(CO) = 0,4717 ммоль \cdot 28 г/моль = 13,21 мг, что соответствует ПДК в 13,21/0,6605 =$ **20**мг/м³ угарного газа.
- **4.** Запишем уравнение реакции сгорания смеси в общем виде: $\mathbf{G} + \mathbf{H} + 4 \text{NaOH} + x \mathbf{O}_2 \rightarrow \mathbf{I} + 2 \text{H}_2 \mathbf{O}$. Пусть количества веществ \mathbf{G} и \mathbf{H} равны по 1 моль, тогда молярную массу \mathbf{I} можно представить в виде $\mathbf{M}(\mathbf{I}) = \mathbf{M}(\mathbf{G}) + \mathbf{M}(\mathbf{H}) + 2 \mathbf{M}(\mathbf{N}_{2}\mathbf{O}) + 32x$. Получаем уравнение на привес массы: $\mathbf{M}(\mathbf{I})/(\mathbf{M}(\mathbf{G}) + \mathbf{M}(\mathbf{H}) + 4 \mathbf{M}(\mathbf{N}_{2}\mathbf{O})) = 1,03461 \rightarrow 32x = 0,03461(\mathbf{M}(\mathbf{G}) + \mathbf{M}(\mathbf{H})) + 41,54$. Сумма молярных масс искомых веществ скорее всего является целым числом, как и коэффициент x перед \mathbf{O}_{2} в уравнении реакции. Отсюда простым перебором при x = 2 получаем $\mathbf{M}(\mathbf{G}) + \mathbf{M}(\mathbf{H}) = 649$ г/моль. Желтый цвет пламени говорит о том, что скорее всего $\mathbf{E} \mathbf{N}\mathbf{a}$, тогда формулы искомых веществ представимы в виде $\mathbf{G} \mathbf{N}_{2}\mathbf{a}$, $\mathbf{H} \mathbf{N}_{2}\mathbf{a}$, где $\mathbf{G} \mathbf{G}_{2}\mathbf{a}$ лемент, образующий простое вещество \mathbf{F} , а n и m это индексы в соответствующих формулах, которые пока могут принимать как целые, так и дробные значения (например, если $\mathbf{G} \mathbf{N}_{2}\mathbf{a}$), то n = 1/3). Запишем уравнение: $\mathbf{M}(\mathbf{G}) + \mathbf{M}(\mathbf{H}) = 46 + (n+m)\mathbf{M}(\mathbf{G}) = 649 \rightarrow \mathbf{M}(\mathbf{G}) = \mathbf{M}(\mathbf{F}) = 603/(n+m)$. Заметим, что почти наверняка сумма $n + m \geq 3$, так как при меньших значениях суммы молярная масса \mathbf{F} получается слишком большой. Как раз при n + m = 3 получаем $\mathbf{M}(\mathbf{F}) = 201$ г/моль и $\mathbf{F} \mathbf{H}_{2}$. Суммарно 1 моль \mathbf{G} и 1 моль \mathbf{H} содержат 3 моль атомов ртути и два моль атомов натрия, тогда $\mathbf{I} \mathbf{N}_{2}\mathbf{H}_{2}\mathbf{O}_{2}$. Также засчитывается как правильная и формула $\mathbf{I} \mathbf{N}_{3}\mathbf{H}_{2}\mathbf{O}_{3}$. Единственный вариант формул искомых веществ это $\mathbf{G} \mathbf{N}_{3}\mathbf{H$

Система оценивания:


1.	Две области применения — по 0.5 б., расчёт — 1 б.	$2 \cdot 0, 5 + 1 = 2 6.$
2.	Формулы A_1 – A_3 , A – C – no 1 б., уравнения реакций $[1$ – $5]$ – no 1 б., расчёт	$6 \cdot 1 + 5 \cdot 1 + 2 + 2 + 2 = 17 6.$
	объёма аммиака – 2 б., массовой доли азотной кислоты – 2 б., выпадение	
	осадка с расчётом – 2 б. (не учтена дополнительная H_2O – 1 б., без расчёта –	
	0 б.)	
3.	Формулы D , D_1 – D_3 – no 1 б., уравнения реакций [6–10] – no 1 б., ПДК угарного	$1 \cdot 4 + 5 \cdot 1 + 2 = 11 6.$
	газа – 2 б.	
4.	Φ ормулы веществ $E-I$ – no 2 б.	5.2 = 10 6.
	Всего:	40 баллов

Задание 8-3. (автор А.С. Чубаров)

1. $Na[Al(OH)_4]$ — тетрагидроксоалюминат натрия. **1** — внутренняя сфера; **2** — внешняя сфера; **3** — центральный атом (металл комплексообразователь); **4** — лиганд; **5** — координационное число.

Уравнения реакций [1]-[9]: [1] $AlCl_3 + 3NaOH = 3NaCl + Al(OH)_3$; [2] $Al(OH)_3 + NaOH = Na[Al(OH)_4]$;

- [3] $4NaOH_{(H36.)} + AlCl_3 = Na[Al(OH)_4] + 3NaCl;$ при таком порядке добавления гидроксид-ион изначально находится в избытке; по этой причине гидроксид алюминия не успевает сформировать осадок (сразу же растворяется) ответ на вопрос из текста задания; [4] $Na[Al(OH)_4] + 4HCl_{(H36.)} = NaCl + AlCl_3 + 4H_2O;$
- [5] $Na[Al(OH)_4] + CO_{2(H36.)} = NaHCO_3 + Al(OH)_3$; [6] $Na[Al(OH)_4] + NH_4Cl_{(H36)} = NaCl + NH_3 + H_2O + Al(OH)_3$;
- [7] $Na[Al(OH)_4] \xrightarrow{t,^{\circ}C} NaAlO_2 + 2H_2O;$ [8] $FeCl_3 + 6KSCN = K_3[Fe(SCN)_6] + 3KCl,$ возможны $K_2[Fe(H_2O)(SCN)_5],$ $K[Fe(H_2O)_2(SCN)_4],$ $[Fe(H_2O)_3(SCN)_3];$ $Fe(SCN)_3$ не подходит, так как не является комплексной солью;
- [9] $FeCl_3 + K_4[Fe(CN)_6] = KFe[Fe(CN)_6] + 3KCl$ (возможен вариант $Fe_4[Fe(CN)_6]_3$);
- **2.** Уравнения реакций [**10**]-[**13**]: [**10**] $2Cu + 8HCl_{\text{конц., изб.}} + O_2 = 2H_2[CuCl_4] + 2H_2O;$ [**11**] $I_2 + KI = K[I_3];$
- [12] $AgCl + 2NH_3 = [Ag(NH_3)_2]Cl;$ [13] $2MnSO_4 + H_2O_2 + 12KCN = 2K_3[Mn(CN)_6] + 2K_2SO_4 + 2KOH;$
- **3.** Пространственное строение цис- и транс-изомеров $[Cu(NH_3)_2Cl_2]$ (геометрия квадрат):

4. Хлорид **A** имеет формулу **X**Cl_n, причем $W_X = 45,38$ %, тогда $M_X/(M_X + 35,5n) = 0,4538$, $M_X = 29,49n$. При n=2 $M_X = 59$, металл **X** = Co или Ni. По названию духа кобольда и из абзаца про Вернера и примеры комплексов несложно догадаться, что речь идет о кобальте. Синий $CoCl_2$ (хлорид кобальта(II)) поглощает воду из влажного воздуха, образуя кристаллогидрат $CoCl_2*nH_2O$. Зная, что W(Co) = 24,8 %, составим уравнение 59/(59+71+18n) = 0,248, откуда получим n=6 и состав **B** $CoCl_2*6H_2O$ – гексагидрат хлорида кобальта(II) или $[Co(H_2O)_6]Cl_2$ – хлорид гексааквакобальта(II).

При взаимодействии $CoCl_2$ с газообразным аммиаком образуются аммиачные комплексы $CoCl_2*nNH_3$. С учетом W(Cl) = 30,6 % составим уравнение 71/(59+71+17n) = 0,306, откуда получим n = 6 и состав C $CoCl_2*6NH_3$ или $[Co(NH_3)_6]Cl_2$ – хлорид гексаамминкобальта(II).

Получение вещества ${\bf D}$ осуществляется в водном растворе в присутствии кислорода, что наводит на мысль о возможном окислении кобальта до степени окисления +3. В связи с этим в состав комплекса для нейтрализации заряда должно входить три хлорид-иона. С учетом W(Cl) = 42,5 %, получим, что ${\bf D}$ – $CoCl_3*5NH_3$ или $[Co(NH_3)_5Cl]Cl_2$ – хлорид хлоропентаамминкобальта(III). Один хлорид-ион войдет во внутреннюю сферу для сохранения KH 6. Это подтверждается тем, что нитрат серебра осаждает только два эквивалента хлорид-ионов.

Соединение **B** ([Co(H_2O)₆]Cl₂ или CoCl₂*6 H_2O) относится к кристаллогидратам или аквакомплексам. В нем молекулы воды связаны с катионом Co³⁺ ковалентными связями, образующимися по донорно-акцепторному механизму (донор – атом кислорода, акцептор – катион металла).

Уравнения реакций [14]-[18]: [14] $CoCl_2 + 6H_2O = CoCl_2*6H_2O$ ([$Co(H_2O)_6$] Cl_2);

- [15] $CoCl_2 + 6NH_{3(ra3)} = [Co(NH_3)_6]Cl_2$; [16] $[Co(NH_3)_6]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_6](NO_3)_2$;
- [17] $4\text{CoCl}_2 + 16\text{NH}_3 + \text{O}_2 + 4\text{NH}_4\text{Cl} = 4[\text{Co(NH}_3)_5\text{Cl}]\text{Cl}_2 + 2\text{H}_2\text{O};$
- [18] $[Co(NH_3)_5Cl]Cl_2 + 2AgNO_3 = 2AgCl + [Co(NH_3)_5Cl](NO_3)_2$.

1. Название Na[Al(OH) ₄] и частей комплекса 1-5 по 1 б., избыток гидроксид-иона 1 б.	1*6+1=76.
1-2. Уравнения реакций [1]-[13] no 1 б.	1*13 = 13 б.
3. Строение изомеров [$Cu(NH_3)_2Cl_2$] по 1 б.	1*2 = 2 6.
4. Формулы веществ X , A - D , по 1 б., названия A - D , тип B , донорно-акцепторный	1*5+1*6+1*5=16 6.
механизм по 1 б. Уравнения реакций [14]-[18] по 1 б.	
Всего:	38 баллов