

63-я Всесибирская открытая олимпиада школьников

Заключительный этап 2024-2025 уч. года

Решения заданий по химии

9 класс

Задание 1. (авторы А.С. Романов, И.А. Трофимов)

- **1.** Тройка красного, зелёного и синего диодов называется «<u>пиксель</u>». Яркость каждого диода независима от другого, следовательно количество возможных цветов $N_{total} = N_{\kappa pach} \cdot N_{3en\"eh} \cdot N_{cun} = 256^3 = 2^{24} = 16777216$.
- 2. Судя по протеканию реакции азота с металлом, скорее всего X представляет собой нитрид неизвестного металла. С помощью рисунка фрагмента структуры X можно установить стехиометрию нитрида. Все малые атомы связаны только с большими, а все большие только с малыми и при этом KY у обоих атомов равно 4, поэтому отношение атомов равно 1:1. Также можно подсчитать число атомов в 1 элементарной ячейке. Четыре малых атома в верхней и нижней тупоугольной грани принадлежат элементарной ячейке на 1/6 своего объёма, в верхней и нижней остроугольной грани 6 малых атома принадлежат на 1/12 своего объёма и 1 малый атом полностью принадлежит элементарной ячейке. Тогда их число равно $4\cdot1/6+4\cdot1/12+1=2$ шт. Большие атомы лежащие на рёбрах с тупым углом принадлежит элементарной ячейке на 1/6 своего объёма, атомы лежащие на рёбрах с острым углом принадлежат элементарной ячейке на 1/6 своего объёма, тогда с учётом одного внутреннего большего атома их число равно $2\cdot1/3+2\cdot1/6+1=2$ шт. В итоге соотношение атомов в X равно 2:2=1:1. Теперь воспользуемся массовым содержанием углерода в Q: M(Q)=12x/0,3130=38,33x, где x число атомов углерода в Q. При x=3 получаем M(Q)=115 г/моль, что за вычетом трех молярных масс CH_3 -групп дает 70 г/моль, что соответствует M-Ga, $Q-Ga(CH_3)$ 3, X-GaN.

Уравнения реакций [1–4]: [1]
$$2Ga + 2NH_3 \xrightarrow{950 \text{ °C}} 2GaN + 3H_2$$
; [2] $2Ga + N_2 \xrightarrow{t^\circ} 2GaN$; [3] $Ga(CH_3)_3 + NH_3 \xrightarrow{1000 \text{ °C}} GaN + 3CH_4$; [4] $2Ga + 3Hg(CH_3)_2 \xrightarrow{100 \text{ °C}} 2Ga(CH_3)_3 + 3Hg$.

3. Рассчитаем молярную массу E при условии, что из его фосфата образуется сульфат состава $E_2(SO_4)_3$: $M(E_2(SO_4)_3)=5,000\cdot233\cdot3/7,500=466$ г/моль, что за вычетом трех молярных масс иона $SO_4^{2^-}$ и делением на 2 дает M(E)=89 г/моль, а значит, E — **иттрий Y**. Определим вещество $G: M(G)=23x/0,2788=82,5x \to x=2$, M(G)=165 г/моль. Зеленый цвет вещества G намекает на присутствие манганат-ионов в расплаве, что и подтверждается расчетом молярной массы, $G-Na_2MnO_4$. Значит D это не марганец, поскольку последний выпадает в осадок в виде гидроксида в реакции [11], а раствор содержит D. С помощью формулы вещества $Y_3D_5O_{12}$ можно установить степень окисления D=(24-15)/3=+3. Исходя из частой встречаемости D в минералах и тому, что этот металл — один из трёх самых распространённых элементов (а это D, D, D, можно сделать вывод о том, что D — алюминий D.

Зашифрованные в схеме вещества и элементы:

Шифр	D	E	F	G	Н	I
Формула	Al	Y	Y ₂ (SO ₄) ₃	Na ₂ MnO ₄	Al ₂ (SO ₄) ₃	$NaAlO_2$ или $Na_{(1+2x)}AlO_{(2+x)}$
Шифр	K	L	N	0	T	W
Формула	$Y(NO_3)_3$	Mn	Na[Al(OH) ₄]	Al(OH) ₃	MnSO ₄	$Al(NO_3)_3$

Уравнения реакций [5–15]:

$$\textbf{[5]} \ 2YPO_4 + 3H_2SO_4 \xrightarrow{\textbf{140 °C}} Y_2(SO_4)_3 + 2H_3PO_4; \textbf{[6]} \ Y_2(SO_4)_3 + 3Ba(NO_3)_2 \rightarrow 2Y(NO_3)_3 + 3BaSO_4 \downarrow;$$

- [7] MnAl₂O₄ + 4NaOH + O₂ $\xrightarrow{t^\circ}$ Na₂MnO₄ + 2NaAlO₂ (допустимо указывать Na_(1+2x)AlO_(2+x)) + 2H₂O↑;
- [8] $Na_2MnO_4 + 2Na_2SO_3 + 2H_2SO_4 \rightarrow MnSO_4 + 3Na_2SO_4 + 2H_2O_5$
- [9] $2NaAlO_2 + 4H_2SO_4 \rightarrow Na_2SO_4 + Al_2(SO_4)_3 + 4H_2O_5$
- [10] $Al_2(SO_4)_3 + 8NaOH_{(H36)} \rightarrow 2Na[Al(OH)_4] + 3Na_2SO_4;$
- [11] $MnSO_4 + 2NaOH \rightarrow Mn(OH)_2 \downarrow + Na_2SO_4$;
- [12] $4Mn(OH)_2 + O_2 + 2H_2O \rightarrow 4Mn(OH)_3 \downarrow$ (допустимо указывать в продуктах MnOOH, MnO₂ или Mn(OH)₄);
- [13] $Na[Al(OH)_4] + H_2S \rightarrow Al(OH)_3 \downarrow + H_2O + NaHS (Na_2S минус 0,5 б., NaOH 0 б.);$
- [14] $Al(OH)_3 + 3HNO_3 \rightarrow Al(NO_3)_3 + 3H_2O;$
- [15] $9Y(NO_3)_3 + 15Al(NO_3)_3 + 20C_6H_8O_7 \xrightarrow{\iota} 3Y_3Al_5O_{12} + 120CO_2\uparrow + 80H_2O\uparrow + 36N_2\uparrow.$
- 4. Искомая фраза «Light of knowledge» (свет знаний).

9 класс Лист 1 из 7

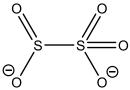
Система оценивания:

Пиксель, расчёт количества цветов – no 0,5 б.
 Вещества М, Q, X – no 1 б., уравнения реакций [1-4] – no 1 б.
 Символы элементов D, E, L, формулы веществ F – I, K, N, O, T, W и уравнения реакций [5-15] – no 1 б.
 Фраза со словами Light и Knowledge – 1 б.
 16.

 4. Фраза со словами Light и Knowledge – 1 б.
 1 б.

 Всего:
 32 балла

9 класс Лист 2 из 7


Задание 2. (авторы А.С. Романов, И.А. Трофимов)

- 1. Брожение используется в хлебопечении, виноделии, производстве кисломолочных продуктов и многих других областях пищевой промышленности. Жидкость, выделенная Бюхнером из дрожжей, представляет собой раствор ферментов. Уравнение сбраживания глюкозы: $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2\uparrow$.
- 2. Рассчитаем сначала количество вещества глюкозы и найдем теоретическое количество углекислого газа, а затем и выход реакции: $n(C_6H_{12}O_6)=\frac{25,00\cdot0,93}{180}=0,1292$ моль $\Rightarrow n_{\rm Teop}(CO_2)=0,1292\cdot 2=0,2584$ моль. $n_{\rm прак}(CO_2)=n(BaCO_3)=\frac{41,98}{197}=0,2131$ моль $\Rightarrow \eta=\frac{0,2131}{0,2584}=82,5\%$. Найдем массу этанола и массу раствора для нахождения его массовой доли: $m(C_2H_5OH)=0,2131\cdot 46=9,803$ г, $m(CO_2)=0,2131\cdot 44=9,376$ г, m(p-pa)=25,00+150-9,376=165,6 г $\Rightarrow \omega(C_2H_5OH)=\frac{9,803}{165,6}=5,92\%$. Рассчитаем объём, который занимает 9,803 г чистого этанола и отыщем его объёмную долю в растворе: $V(C_2H_5OH)=\frac{9,803}{0,789}=12,42$ мл $\Rightarrow \varphi(C_2H_5OH)=\frac{V_{C_2H_5OH}}{V_{C_2H_5OH}+V_{H_2O}}=\frac{12,42}{12,42+150}=7,65\%$. Участник олимпиады может рассчитать объёмную долю этанола иначе: $\varphi(C_2H_5OH)=\frac{12,42\cdot0,988}{165,6}=7,41\%$, такой способ расчёта также принимается за правильный. Отметим, что на самом деле последняя величина называется «объёмная концентрация» и выражает объём чистого вещества, который можно выделить из 100 мл раствора. По ГОСТ крепость спиртовых растворов выражают именно при помощи объёмной концентрации. Объёмная доля в свою очередь выражает объём чистого вещества V_1 , которое смешивали с объёмом V_2 других чистых веществ, причем $V_1+V_2=100$ [V], для жидких растворов $V_1+V_2\neq V_{p-pa}$, поскольку разные молекулы в жидкости взаимодействуют друг с другом с различной энергией. Равенство $V_1+V_2=V_{p-pa}$ выполняется лишь для идеальных газов (Т >> T_{sp} , P<< P_{sp}) и идеальных растворов, которых строго говоря не существует, но смеси многих веществ схожей химической природы (напр. метанол и изопропанол) могут быть очень близки к идеальным растворам и для них с хорошей точностью $V_1+V_2\approx V_{p-pa}$.

Более концентрированный раствор этанола можно получить при помощи <u>перегонки (дистилляции)</u> забродившей фракции. Бытовое название более концентрированного раствора этанола — <u>самогон</u>.

- 3. Эта деталь называется ректификационной колонной. С её помощью можно значительно повысить эффективность процесса дистилляции, за счёт непрерывного тепломассообмена между жидкой и паровой фазами внутри колонны. Собственное название получаемого продукта спирт-ректификат. Однако, при помощи одной лишь дистилляции с ректификационной колонной при атмосферном давлении можно получить только азеотропный раствор (мольный состав раствора равен мольному составу паров) составом 95,57% спирта по массе. Практически безводный этанол можно получить при использовании химических осушителей, таких как безводный сульфат меди(II) или при помощи других химических реакций с водой, например путём добавления небольшого количества сложного эфира к спирту, а затем натрия, то можно добиться удаления воды, так как она будет затрачиваться на реакцию гидролиза сложного эфира. Наконец, можно использовать перегонку с ректификационной колонной при пониженном давлении, например ниже 70 мм. рт. ст. этанол не образует азеотропной смеси с водой. Безводный спирт называется абсолютным.
- **4.** Уксусная кислота является одноосновной, поэтому со щелочью реагирует в соотношении 1 к 1, рассчитаем массовую концентрацию кислоты: $C_m(CH_3COOH) = \frac{7,33\cdot0,0500\cdot60}{200} = 0,110$ г/100 мл.
- 5. При нагревании виноградного сока с соляной кислотой происходит гидролиз олигосахаридов, в частности сахарозы: $C_{12}H_{22}O_{11}+H_2O=C_6H_{12}O_6$ (α -глюкоза) + $C_6H_{12}O_6$ (β -фруктоза). Сначала глюкозу окисляют иодом в щелочной среде: R-СНО (или $C_6H_{12}O_6$) + I_2 + $3NaOH \rightarrow R$ -СООNа (или $C_6H_{11}O_7Na$) + 2NaI + $2H_2O$. Одновременно с этим избыток иода диспропорционирует в щелочной среде: [1] $6NaOH + 3I_2 \rightarrow 5NaI + NaIO_3$ + $3H_2O$. При добавлении серной кислоты происходит обратный предыдущему процесс сопропорционирование в кислой среде: [2] $5NaI + NaIO_3 + 3H_2SO_4 \rightarrow 3Na_2SO_4 + 3I_2 + 3H_2O$. Наконец, иод количественно вступает в реакцию с тиосульфатом натрия: [3] $I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$. Рассчитаем количество вещества иода, ушедшего на окисление глюкозы: $n(I_2) = 25,00 \cdot 0,08250 \frac{24,84 \cdot 0,1000}{2} = 0,8205$ ммоль. Тогда $C_m(C_6H_{12}O_6) = \frac{0,8205 \cdot 180}{10} = 14,77 \text{ r}/100 \text{ мл}$.
- 6. <u>Ферменты белковые молекулы,</u> молекулы РНК или их комплексы, <u>ускоряющие химические реакции</u> в живых системах. От промышленных катализаторов они отличаются высокой <u>специфичностью</u> (подходят как правило только для одного субстрата) и <u>эффективностью</u> (быстрая конверсия), а также способностью работы только в <u>очень ограниченном диапазоне внешних условий</u> (температур, давлений и кислотности среды).
- 7. Оборудование может быть загрязнено различными микроорганизмами из окружающей среды, которые могут продуцировать в ходе брожения соединения, ухудшающие качество и безопасность итогового продукта. Брутто-формулы компонентов Антиформина: хлорная известь CaOCl₂ или CaCl₂·Ca(OCl)₂, кальцинированная сода Na₂CO₃, каустическая сода NaOH. Для получения NaOH необходимо приготовить раствор поваренной

9 класс Лист 3 из 7

соли в воде и провести электролиз с диафрагмой: $2NaCl + 2H_2O \xrightarrow{\mathfrak{I}_{3}-\mathfrak{I}_{3}} 2NaOH + Cl_2 + H_2$. В этом процессе также образуется и хлор, который понадобится нам для синтеза хлорной извести <u>при охлаждении</u> по уравнению: $2Ca(OH)_2 + 2Cl_2 \xrightarrow{\mathfrak{X}_{3}-\mathfrak{I}_{3}} CaCl_2 + Ca(OCl)_2$ (или $CaOCl_2) + 2H_2O$. Ещё нужно синтезировать углекислый газ и гидроксид кальция из известняка, это можно осуществить его прокаливанием при <u>высоких</u> t° <u>СаСО3</u> t° t° t

температурах: СаСО3 пиросульфит-анион взаимодействии негашеной извести с водой: CaO + $H_2O \rightarrow Ca(OH)_2$. Получить кальцинированную соду можно двумя способами, взаимодействием NaOH_{тв.} и CO₂ с <u>последующим</u> нагреванием смеси для удаления воды: $2\text{NaOH} + \text{CO}_2 = \text{Na}_2\text{CO}_3 \cdot \underline{x} \text{H}_2\text{O} + (2-x) \text{H}_2\text{O}, \ \text{Na}_2\text{CO}_3 \cdot x \text{H}_2\text{O} \xrightarrow{t^\circ} \text{Na}_2\text{CO}_3 + (2-x) \text{H}_2\text{O}$ xH₂O. Второй способ заключается в пропускании избытка углекислого газа через водный раствор NaOH, так как недостаток CO_2 контролировать значительно труднее, нежели его избыток: $NaOH + CO_2 \rightarrow NaHCO_3$. Затем осуществляют «кальцинирование», то есть прокаливание полученной пищевой соды: $2NaHCO_3 \rightarrow Na_2CO_3 +$ Н₂О. Данный способ является значительно более рациональным, чем первый, однако первый всё равно оценивается полным баллом. Определим формулу консерванта при помощи информации о массовых содержаниях серы и кислорода. Для этого определим соотношение этих элементов в данной соли: n(S): $n(O) = \frac{28,82}{32}$: $\frac{36,04}{16}$ = 0,9006: 2,2525 = 2: 5. Предположим, что в состав консерванта входит два атома серы, тогда его молярная масса вычисляется по формуле: $M = \frac{32 \cdot 2}{0.2882} = 222$ г/моль. Вычитая из молярной массы консерванта две молярные массы серы и пять молярных масс кислорода в остатке получаем 78 г/моль, что соответствует двум молярным массам калия \Rightarrow формула консерванта – $K_2S_2O_5$. Структурная формула аниона приведена на рисунке выше.

- **8**. Основной компонент пирита представляет собой дисульфид железа(II) $Fe^{+2}S_2^{-1}$, его формулу можно отыскать при помощи известной массовой доли серы. Сначала пирит следует сжечь на воздухе для получения сернистого газа: $4FeS_2 + 11O_2 \rightarrow 2Fe_2O_3$ (или Fe_3O_4) + $8SO_2$. Далее следует пропустить <u>избыток</u> сернистого газа через водный раствор едкого кали: $KOH + SO_2 \rightarrow KHSO_3$. При выпаривании данного раствора гидросульфит не кристаллизуется, поскольку является неустойчивым, но вместо него в твердую фазу выделяется пиросульфит: $2KHSO_3 \xrightarrow{\text{выпаривание}} K_2S_2O_5 + H_2O$. Концентрированными серной и азотной кислотой дисульфид железа(II) окисляется следующим образом: $FeS_2 + 18HNO_3 \rightarrow 2H_2SO_4 + Fe(NO_3)_3 + 15NO_2\uparrow + 7H_2O$, $2FeS_2 + 14H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 15SO_2\uparrow + 14H_2O$.
- 9. Рассчитаем время, за которое автомобиль преодолеет указанное расстояние: $t=\frac{3300}{205}=16,1$ часов = 57960 с. Мощность двигателя составляет $136\cdot0,736=100,1$ кДж/с, теперь можно рассчитать энергию необходимую для преодоления расстояния: $Q=100,1\cdot57960=5801,8$ МДж. Уравнение реакции сгорания этанола: $C_2H_5OH_{(p-p)}+3O_{2(r)}=2CO_{2(r)}+3H_2O_{(r)}$. Теперь по закону Гесса найдем теплоту сгорания этанола: $Q_{\rm crop}=3Q_f\left(H_2O_{(r)}\right)+2Q_f\left(CO_2\right)-Q_f\left(C_2H_5OH_{(p-p)}\right)=1277,6$ кДж/моль. Необходимо учесть, что часть выделяемой теплоты будет тратиться на испарение воды, которая содержится в исходном топливе. Для дальнейшего расчёта удобно перевести полученную мольную теплоту сгорания в удельную теплоту сгорания: $Q_{\rm crop,yq}=\frac{1277,6\cdot1000}{46}=27774$ кДж/кг этанола. Один килограмм топлива содержит 0,955 кг этанола и 45 г воды, которую необходимо будет испарить. При испарении 45 г воды будет затрачиваться $45\cdot44/18=110$ кДж энергии, а при сгорании 0,955 кг этанола выделится $27774\cdot0,955=26524$ кДж. Тогда при сгорании 1 кг топлива выделится 26524-110=26414 кДж энергии. Рассчитаем объём топлива, необходимый для преодоления такого расстояния: V (топлива) = $\frac{5801,8\cdot10^3}{26414\cdot0,809}=271,5$ л или 8,2 л/100 км.

В качестве предостережения отметим, что в России на законодательном уровне закреплено, что максимальная скорость легкового автомобиля в черте города не должна превышать 60 км/ч, а на автомагистралях — 110 км/ч. Скорость автомобиля 205 км/ч в условии задачи указана, чтобы можно было соотнести максимальную мощность двигателя и максимальную скорость автомобиля.

9 класс Лист 4 из 7

Система оценивания:

1.	Каждый продукт питания – по 1 б., указание на раствор ферментов – 1 б., уравнение сбраживания – 1 б.	$2 \cdot l + l + l = 4 6.$
2.	Выход реакции — 1 б., массовая и объёмная доли этанола по 1 б., указание на дистилляцию и самогон — по 1 б.	$1+2\cdot 1+1+1=5$ 6.
3.	Название детали, спирт-ректификат, способ получения ~100% спирта и его название – по 1 б.	1+1+1+1=46.
4.	Массовая концентрация уксусной кислоты – 2 б.	2 б.
5.	3 уравнения реакций – по 1 б., массовая концентрация глюкозы – 2 б.	$3 \cdot 1 + 2 = 5 6$.
6.	Определение фермента – 1 б., три отличия по 0,5 б.	$1+3\cdot 0, 5=2,5 \text{ 6.}$
7.	Микроорганизмы и продукты их жизнедеятельности – по 0,5 б.,	$2 \cdot 0.5 + 3 \cdot 1 + 3 \cdot 2 + 2 \cdot 1 + 0.5 =$
••	брутто-формулы веществ — по 1 б., рациональные способы получения — по 2 б., если способ нерациональный — 1 б., если не указаны условия проведения реакции — минус $0,5$ б за способ получения. Брутто- и структурная формула консерванта — по 1 б., расчёт — $0,5$ б.	12,5 6.
8.	Рациональный способ получения пиросульфита — 3 б., степени окисления элементов — по 0,5 б., уравнения реакций с кислотами — по 2 б.	$3+2\cdot 0, 5+2\cdot 2=8 6.$
9.	_ **	I+6=76.
	Всего:	50 баллов

9 класс Лист 5 из 7

Задание 3. (автор А.С. Романов)

- **1.** Вещество **C** можно вычислить сразу, поскольку m(C) = 2,24 1,12 = 1,12 г, тогда M(C) = 1,12/0,04 = 28 г/моль, что соответствует **C** = **Si**. Ясно, что формулу вещества **A** можно представить в виде BSi_n , где B элемент, которые образует простое вещества **B**, а n дробное или целое число. Тогда индексы $\mathsf{1}:n$ соотносятся как $\mathsf{1},\mathsf{12}/\mathsf{M}(\mathsf{B}):0,04 = 28n/\mathsf{M}(\mathsf{B}):n \Rightarrow \mathsf{M}(\mathsf{B})=28n$. Подставляя n=2, получаем $\mathsf{B}=\mathsf{Fe}$ и $\mathsf{A}=\mathsf{FeSi}_2$, дисилицид железа. Уравнение реакции: [1] $\mathsf{Fe}+\mathsf{2Si}\to\mathsf{FeSi}_2$.
- 2. Из массового содержания кислорода получим формулы для расчёта молярных масс веществ:

Шифр	Шифр Е		G
М, г/моль	22 <i>n</i>	28 <i>n</i>	18 <i>n</i>

Поскольку **F** содержит всего 2 атома в одной формульной единице, то n=1 и тогда на второй атом приходится 12 г/моль, что соответствует углероду, и тогда **F** = **CO**. Аналогично можно расшифровать и **E** = **CO**₂, который образуется при сжигании угарного газа в кислороде. Ясно, что у участников Олимпиады с собой может быть только бутылочка с водой, поэтому **G** = **H**₂**O**. Поскольку **D** синтезируют из простых веществ, то оно является бинарным (двухэлементным), к тому же оно газообразное и содержит 4 атома на одну формульную единицу. Эта информация и наличие в схемах [X] и [Y] соли аммония наводит на мысль, что **D** = **NH**₃. Запишем уравнения реакций:

[2]
$$N_2 + 3H_2 \xrightarrow{\gamma - Fe, \ t \ {}^{\circ}C, \ p} 2NH_3$$
; [3] $NH_3 + HNO_3 \rightarrow NH_4NO_3$; [4] $2CO + O_2 \xrightarrow{t \ {}^{\circ}C} 2CO_2$; [5] $CO + H_2O \xrightarrow{t \ {}^{\circ}C, \ cat} CO_2 + H_2$; [6] $K_2CO_3 + CO_2 + H_2O \rightarrow 2KHCO_3$; [7] $CO + NaOH \xrightarrow{120\ {}^{\circ}C, \ 5\ aTM} NaHCOO$; [8] $2NaHCOO \xrightarrow{400\ {}^{\circ}C} Na_2C_2O_4 + H_2$; [9] $Na_2C_2O_4 + 2H_2SO_{4(KOHIL.)} \rightarrow 2NaHSO_4 + CO + CO_2 + H_2O$.

Нитрат аммония, который образуется в ходе реакции [3], широко применяется в качестве удобрения или взрывчатого вещества при горных работах. Структурная формула и геометрическая форма молекулы воды приведена на рисунке справа. В твёрдой воде присутствуют ковалентные полярные и водородные связи. Можно отметить и присутствие связей Ван дер Ваальса, но указывать их наличие не требуется.

3. Запишем схему реакции [X]: $3\text{Na}_2\text{CO}_3 + 2\text{V}_2\text{O}_5 + 6(\text{NH}_4)_2\text{HPO}_4 + 4\text{C} \rightarrow 2\text{X} + \text{NH}_3 + \text{CO}_2 + \text{CO} + \text{H}_2\text{O}$, ясно, что весь натрий, фосфор и ванадий содержатся в X. Предполагая, что весь фосфор перешёл в X в виде фосфата, получаем (учитывая, что X — четырехэлементное вещество) коэффициенты: 12 перед NH₃, 9 перед H₂O; слева 43 кислорода, справа 2x + z + 9 + 2X = 43, причем по углероду x + z = 7, тогда x + 2X = 27. Если весь фосфор перешел в X в виде фосфата, то он должен содержать $6\cdot 4/2 = 12$ атомов кислорода и тогда x = 3. Написав уравнение реакции, получаем $X = \text{Na}_3\text{V}_2(\text{PO}_4)_3$.

[X]
$$3Na_2CO_3 + 2V_2O_5 + 6(NH_4)_2HPO_4 + 4C \rightarrow 2Na_3V_2(PO_4)_3 + 12NH_3 + 3CO_2 + 4CO + 9H_2O$$
.

Проведем аналогичные рассуждения для реакции [Y]: $0.78 \text{Na}_2 \text{CO}_3 + 1.22 \text{FeC}_2 \text{O}_4 \cdot 2 \text{H}_2 \text{O} + 2 (\text{NH}_4)_2 \text{HPO}_4 \rightarrow \text{Y} + \text{NH}_3 + \text{CO}_2 + \text{CO} + \text{H}_2 \text{O}$, слева азота 4, тогда коэффициент перед NH₃ равен 4. слева водорода $18 + 1.22 \cdot 4$, тогда коэффициент перед водой справа равен $(18 + 1.22 \cdot 4 - 12)/2 = 5.44$. Слева углерода 3,22, справа x + z = 3.22. Кислорода слева 17,66, справа $2x + z + 5.44 + \mathbf{Y} = 17.66 => x + \mathbf{Y} = 9$. Формульная единица вещества \mathbf{Y} содержит 1,56 атом натрия, 1,22 атомов железа, 2 атома фосфора и неизвестное количество атомов кислорода. Если фосфор содержится в виде PO_4^{3-} , то степень окисления железа равна (6 - 1.56)/1.22 = 3.64, что не соответствует условию. Однако, если убрать 1 атом кислорода, что будет соответствовать содержанию пирофосфат-иона $\text{P}_2\text{O}_7^{4-}$, то степень окисления железа равна (4 - 1.56)/1.22 = 2. Отсюда получаем $\mathbf{X} = \mathbf{2}$ и записав уравнение реакции, получаем $\mathbf{Y} = \mathbf{Na}_{1.56} \mathbf{Fe}_{1.22} \mathbf{P}_2 \mathbf{O}_7$.

$$0.78 Na_{2}CO_{3} + 1.22 FeC_{2}O_{4} \cdot 2H_{2}O + 2(NH_{4})_{2}HPO_{4} \rightarrow Na_{1,56}Fe_{1,22}P_{2}O_{7} + 4NH_{3} + 2CO_{2} + 1.22CO + 5.44H_{2}O.$$

Для $Na_3V_2(PO_4)_3$ степень окисления ванадия вычисляется по уравнению электронейтральности: 3+2x-9=0 => x=3; для $Na_{1,56}Fe_{1,22}P_2O_7$ можно поступить аналогично: 1,56+1,22x-4=0 => x=2.

4. По обсуждению проблемы локализации и автолокализации химических реакций в твердой фазе можно понять, что топохимия – раздел химии, изучающий реакции с твердыми веществами, протекающими на границе раздела (локально) твердой фазы с другой фазой. Можно подумать, что все реакции с твердыми телами – топохимические, однако, не стоит забывать, что реакция может протекать и внутри фазы твердого тела, а также по всей поверхности (не локально) твердого тела. Кстати, типичным примером топохимической реакции является коррозия железных изделий на воздухе, которая начинается на поверхности в области (локально), где повреждена защитная плёнка оксида или где присутствует дефект кристаллической решетки. Возникнув в каком-то месте, реакция продолжается в соседних областях кристалла (автолокализация процесса).

Запишем соотношение $M(NO_x)/M(NO_y) = 1,47 = (14 + 16x)/(14 + 16y) => 6,58 = 16x - 23,52y$, простым перебором получаем NO и N_2O . Запишем уравнения реакций:

[10] $K_2C_2O_4 \xrightarrow{t^\circ C} K_2CO_3 + CO$; [11] $2KMnO_4 \xrightarrow{t^\circ C} K_2MnO_4 + MnO_2 + O_2$; [12] $4NH_4ClO_4 \xrightarrow{300^\circ C} 2Cl_2 + 3O_2 + 2N_2O_4 \xrightarrow{t^\circ C} K_2N_1O_4 \xrightarrow{t^\circ$

9 класс Лист 6 из 7

 $+ 8H_2O$; [13] $2NH_4ClO_4 \xrightarrow{380^{\circ}C} Cl_2 + O_2 + 2NO + 4H_2O$. Отметим, что в качестве побочных продуктов в реакциях [12] и [13] образуются (в малых количествах) и ClO_2 , HCl, N_2 , NOCl, NO_2 .

Дорогие участники Олимпиады! Вы можете ознакомиться с упомянутыми в задаче работами по ссылкам:

Kosova, N. V. Perspective Cathode Materials for Sodium-Ion Batteries / N. V. Kosova, D. O. Semykina // Chemistry for Sustainable Development. – 2021. – Vol. 29, No. 3. – P. 333-345. – DOI 10.15372/CSD2021311. – EDN IGVHCI. Boldyrev, V. V. (2006). Thermal decomposition of ammonium perchlorate. Thermochimica Acta, 443(1), 1–36. doi:10.1016/j.tca.2005.11.038

Система оценивания:

1. Формулы веществ A - C, уравнение реакции [1] и название вещества $A - no 1 \delta$.

 $3 \cdot 1 + 1 + 1 = 5 6.$

2. Формулы веществ D - G, уравнения реакций [2] — [9], применение NH_4NO_3 — по 1 б. Структурная формула, геометрическая форма и типы связей — по 0,5 б.

 $4 \cdot 1 + 8 \cdot 1 + 1 + 0, 5 \cdot 4 = 15 6.$

3. Формулы веществ X, Y и уравнения реакций [X], [Y] – no 2 б., степени окисления ванадия и железа – no 1 б.

 $2 \cdot 2 + 2 \cdot 2 + 2 \cdot 1 = 10 \text{ } 6.$

4. Определение топохимии – 4 б., уравнения реакций [10] – [13] по 1 б. **Всего:**

 $4+4\cdot 1 = 8$ б. 38 баллов

9 класс Лист 7 из 7