

55-я Всесибирская открытая олимпиада школьников Второй отборочный этап 2016-2017 уч. года

Решения заданий по химии

Задание 1. (авторы Р.А. Бредихин, В.А. Емельянов).

1. Самые тяжелые из стабильных изотопов каждого элемента, входящего в состав молекул витаминов **B**₁ и **B**₂, это 2 H, 13 C, 15 N, 18 O, 36 S, 37 Cl.

Количество протонов n_{p+} в молекуле «тяжелого» \mathbf{B}_1 : 6*12+1*18+17*2+7*4+8+16=176.

Количество протонов n_{p+} в молекуле «тяжелого» $\mathbf{B_2}$: 6*17+1*20+7*4+8*6=198.

Количество нейтронов n_n в молекуле «тяжелого» $\mathbf{B_1}$: 7*12+1*18+20*2+8*4+10+20=204.

Количество нейтронов n_n в молекуле «тяжелого» **B**₂: 7*17+1*20+8*4+10*6=231.

2. Сначала вычислим молекулярные массы этих витаминов.

Витамин **A**: $M_A = 12*36+1*60+16*2 = 432+60+32 = 524$ a.e.м.

Витамин C: $M_C = 12*6+1*8+16*6 = 72+8+96 = 176$ a.e.м.

В 1 г содержится $6.02*10^{23}$ а.е.м., следовательно, масса одной молекулы витамина **A** составит $524/(6.02*10^{23}) = 8.7*10^{-22}$ г.

В 1 драже содержится 35 мг или $35*10^{-3}$ г витамина C, что составляет $v_C = m_C/M_C = 35*10^{-3}/176 = 1,9886*10^{-4}$ моль или $1,99*10^{-4}*6,02*10^{23} = 1,20*10^{20}$ молекул.

3. Чтобы сравнивать количество молекул, не обязательно считать именно его, достаточно посчитать и сравнить количество каждого вещества в молях. Вычислим молекулярные массы витаминов \mathbf{B}_1 и \mathbf{B}_2 , которые мы еще не считали.

Витамин $\mathbf{B_1}$: $\mathbf{M_{B1}} = 12*12+1*18+35,5*2+14*4+16+32 = 144+18+71+56+16+32 = 337$ а.е.м.

Витамин **B**₂: $M_{B2} = 12*17+1*20+14*4+16*6 = 204+20+56+96 = 376$ a.e.м.

Теперь вычислим количество каждого витамина A, B_1 и B_2 в молях в составе одного драже.

 $v_A = 1.38*10^{-3}/524 = 2.63*10^{-6}$, $v_{B1} = 1*10^{-3}/337 = 2.97*10^{-6}$, $v_{B2} = 1*10^{-3}/376 = 2.66*10^{-6}$ моль.

Таким образом, из предложенных трех витаминов, A, B_1 и B_2 , в составе препарата больше всего молекул витамина A.

4. Количество молекул каждого из витаминов, содержащихся в одном драже препарата, будет равно количеству молей каждого из них, умноженному на число Авогадро.

Следовательно, $n_{\text{молекул}} = 6.02*10^{23}*(\nu_{\text{A}} + \nu_{\text{B1}} + \nu_{\text{B2}} + \nu_{\text{C}}) = 6.02*10^{23}*10^{-6}*(2.63+2.97+2.66+198.86) = 1.25*10^{20}$.

5. Для того, чтобы найти общее количество атомов, сначала надо найти количество атомов в составе каждого из витаминов, а потом сложить эти цифры.

Следовательно, $n_{\text{атомов}} = 6.02*10^{23}*(98\text{VA}+38\text{VB1}+47\text{VB2}+20\text{VC}) = 6.02*10^{23}*10^{-6}*(98*2.63+38*2.97+47*2.66+20*198.86) = 2.69*10^{21}.$

6. По условию задачи весь углерод, входивший в состав витаминов, выделился из организма в виде углекислого газа. Поскольку из одного атома углерода получается одна молекула CO₂, рассчитаем количество углерода, входящего в состав витаминов, для 100 драже.

 $v_{\text{CO2}} = v_{\text{C}} = 100*(36v_{\text{A}} + 12v_{\text{B1}} + 17v_{\text{B2}} + 6v_{\text{C}}) = 100*10^{-6}(36*2,63 + 12*2,97 + 17*2,66 + 6*199) = 0,137$ моль. Масса выделившегося углекислого газа составит 0,137*44 = 6,03 г, его объем при комнатной температуре найдем по уравнению Менделеева-Клапейрона pV = vRT, откуда V = 0,137*0,082*293 = 3,29 л.

7. Витамины (от лат. vita – жизнь) – группа органических соединений различной химической природы, необходимых для нормальной жизнедеятельности организма. Требуются организму в ничтожных количествах (по сравнению с белками, жирами, углеводами, солями). Организм животных и человека не синтезирует большинство витаминов или синтезирует их в недостаточном количестве, поэтому должен получать их в готовом виде с пищей. Недостаток витаминов в пище или нарушение процессов

их всасывания и усвоения приводит к нарушениям обмена веществ и гиповитаминозам. Витамины принимают активное участие в обмене веществ как составные части ферментов и как регуляторы отдельных биохимических и физиологических процессов.

Ключевые фразы, оцениваемые баллами:

- 1) Витамины это органические вещества.
- 2) Витамины необходимы организму для нормальной жизнедеятельности, при недостатке витаминов возникают заболевания.
- 3) Потребность организма в витаминах по объему небольшая.
- 4) Поскольку организм не способен производить витамины в достаточном количестве, они должны поступать с питанием.
- **8.** Витамины лучше принимать через четверть часа после еды, так как увеличивается эффективность усвоения жирорастворимых витаминов (например, витамина **A**) под действием секретов, выделяющихся при пищеварении.

Система оценивания:

1. Количество протонов и нейтронов в каждой из молекул по 1 б. (Если один из изотопов выбран неправильно, то за количество нейтронов 0,5 б., если два изотопа выбраны неправильно, то за количество нейтронов 0 б.)	1×4 = 4 6.
2. Масса молекулы 2 б., количество молекул 2 б.	2+2 = 4 6.
3. Верные ответы по 1 б.	1+1=2 6.
4. Общее количество молекул 2 б	2 б.
5. Общее количество атомов 2 б	2 б.
6. Масса CO ₂ 1,5 б. (за верное количество 1 б.), объем 0,5 б.	1,5+0,5=2 6.
7. Описание термина «витамины» по 0,5 б. за ключевую фразу	$0.5 \times 4 = 2 6.$
8. Пояснение способа приема витаминов 1 б.	1 б.
Всего	19 баллов

Задание 2. (автор О.Г. Сальников).

1. Из предисловия к задаче следует, что \mathbf{X} – сера. Тогда \mathbf{A} – \mathbf{S}_8 (в качестве верного ответа засчитывается и \mathbf{S}), \mathbf{B} – \mathbf{SO}_2 .

Бинарные вещества ${\bf C}$ и ${\bf D}$ образуются при взаимодействии серы с ${\rm NH}_3$ и больше в этой реакции ничего не получается. Значит, одно из них — соединение серы с водородом, а другое — соединение серы с азотом. Для соединения серы с водородом содержание серы 69,60 % явно недостаточно; значит, таким соединением является ${\bf C}$, а не ${\bf D}$. Так как дипольный момент всех связей в ${\bf C}$ отличен от нуля, то это ${\bf H}_2{\bf S}$, а не полисульфаны ${\bf H}_2{\bf S}_n$, содержащие неполярные связи ${\bf S}_-{\bf S}$. Теперь рассчитаем состав ${\bf D}$. Его молярная масса в расчёте на один атом серы ${\bf M}({\bf D})=32,06/0,6960=46,06$ г/моль, что соответствует простейшей формуле ${\bf SN}$. Очевидно, что из двух атомов нельзя построить циклическую молекулу; значит, ${\bf D}$ содержит кратное число фрагментов ${\bf SN}$ (как минимум, ${\bf S}_2{\bf N}_2$). Так как это заочный этап Всесибирской олимпиады, то можно поискать немного информации в университетских учебниках или в сети Интернет, и понять, что соединение ${\bf D}$ — это тиазен (циклотетратиазил) ${\bf S}_4{\bf N}_4$ (по способу получения или золотистому цвету).

Найдём молярные массы M всех неизвестных веществ, для которых дано содержание серы (в расчёте на один атом серы). Для этого используем формулу $M = 32,06/\omega(S)$. Также найдём массу, приходящуюся на все остальные элементы. Получим следующую таблицу:

Вещество	E	F	G	J	M	Q
М, г/моль	49,06	96,74	107,51	40,06	67,55	135,16
[M-M(S)], г/моль	17,00	64,68	75,45	8,00	35,49	103,10

Вещество **E** образуется при взаимодействии SO_2 с H_2S при -70 °C. Его молярная масса в расчёте на один атом серы 49,06 г/моль, что соответствует простейшей формуле HSO. Такого соединения суще-

ствовать не может; к тому же E должно содержать два типа атомов серы в соотношении 1:1. Повидимому, E имеет формулу $H_2S_2O_2$, что соответствует тиосернистой кислоте.

Вещество **F** образуется при взаимодействии цинка с SO_2 . На Zn и O приходится 64,68 г/моль (в расчёте на один атом серы), что меньше атомной массы цинка (65,37 а.е.м.) и не так уж и хорошо совпадает с массой четырёх атомов кислорода (к тому же соединение SO_4 выглядит совсем нереалистично, не говоря о том, что по условию **F** содержит три элемента). Значит, **F** содержит два атома серы; тогда его молярная масса 193,48 г/моль, а на Zn и O приходится 193,48 – 32,06·2 = 129,36 г/моль. Такая масса идеально соответствует ZnO₄; значит, **F** – ZnS₂O₄.

Вещество **G** образуется при взаимодействии MnO_2 с SO_2 . На Mn и O приходится 75,45 г/моль (в расчёте на один атом серы), что не соответствует ни одной из комбинаций атомов этих элементов. Значит, **G** содержит два атома серы; тогда на Mn и O приходится $215,02 - 32,06 \cdot 2 = 150,9$ г/моль. Такая масса идеально соответствует MnO_6 ; значит, $G - MnS_2O_6$.

При взаимодействии SO_2 с хлором и PCl_5 образуются сульфурилхлорид SO_2Cl_2 (**H**) и тионилхлорид $SOCl_2$ (**I**).

В бинарном веществе **J** на второй элемент (O, Cl или Ag) приходится только 8 г/моль в расчёте на один атом серы. Тогда единственный возможный вариант – это S_2O .

При взаимодействии с NaOH диоксид серы образует сульфит натрия Na_2SO_3 (**K**). Дальнейшая реакция с серой приводит к получению тиосульфата натрия $Na_2S_2O_3$ (**L**). Взаимодействие $Na_2S_2O_3$ с иодом приводит к образованию вещества **M**. Так как по условию это вещество содержит два типа атомов серы, то их общее количество тоже не меньше двух. Если их два, то на остаток (Na, O или I) приходится $135,1-32,06\cdot 2=70,98$ г/моль. Подбором нетрудно получить, что в остатке атом Na и три атома O. Тогда **M** должно иметь формулу NaS_2O_3 . Но такой вариант не подходит, так как соединение с таким составом должно иметь серу или кислород с нечётной валентностью. Значит, **M** – это $Na_2S_4O_6$.

При окислении SO_2 кислородом образуется SO_3 (**N**), взаимодействие которого с водой приводит к образованию H_2SO_4 (**O**). В реакции серной кислоты с 1 эквивалентом КОН образуется $KHSO_4$ (**P**). Нагревание гидросульфата калия приводит к его дегидратации с образованием дисульфата $K_2S_2O_7$ (**R**). Осталось определить продукт электролиза $KHSO_4$. На остальные элементы (K, H, O) приходится 103,10 г/моль (в расчёте на один атом серы), что соответствует KO_4 . Однако вещество KSO_4 не подходит, так как соединение с таким составом должно иметь серу или кислород с нечётной валентностью. Значит, **Q** – это $K_2S_2O_8$.

Итого: $\mathbf{A} - S_8$ (сера), $\mathbf{B} - SO_2$ (диоксид серы, оксид серы(IV)), $\mathbf{C} - H_2S$ (сероводород), $\mathbf{D} - S_4N_4$ (тиазен, циклотетратиазил)), $\mathbf{E} - H_2S_2O_2$ (тиосернистая кислота), $\mathbf{F} - Z_1S_2O_4$ (дитионит цинка), $\mathbf{G} - M_1S_2O_6$ (дитионат марганца), $\mathbf{H} - SO_2Cl_2$ (сульфурилхлорид), $\mathbf{I} - SOCl_2$ (тионилхлорид), $\mathbf{J} - S_2O$ (монооксид дисеры), $\mathbf{K} - Na_2SO_3$ (сульфит натрия), $\mathbf{L} - Na_2S_2O_3$ (тиосульфат натрия), $\mathbf{M} - Na_2S_4O_6$ (тетратионат натрия), $\mathbf{N} - SO_3$ (оксид серы(VI)), $\mathbf{O} - H_2SO_4$ (серная кислота), $\mathbf{P} - \mathbf{K}HSO_4$ (гидросульфат калия), $\mathbf{Q} - \mathbf{K}_2S_2O_8$ (пероксодисульфат калия), $\mathbf{R} - \mathbf{K}_2S_2O_7$ (дисульфат калия).

2.

3.
$$S + O_2 = SO_2$$
;

$$10S + 4NH_3 = 6H_2S + S_4N_4$$
;

$$H_2S + SO_2 = H_2S_2O_2$$
;

 $2SO_2 + Zn = ZnS_2O_4;$ $MnO_2 + 2SO_2 = MnS_2O_6;$ $SO_2 + Cl_2 = SO_2Cl_2;$

 $SO_2 + PCl_5 = SOCl_2 + POCl_3;$ $SOCl_2 + Ag_2S = S_2O + 2AgCl;$

 $SO_2 + 2NaOH = Na_2SO_3 + H_2O;$ $Na_2SO_3 + S = Na_2S_2O_3;$

 $2Na_2S_2O_3 + I_2 = Na_2S_4O_6 + 2NaI;$ $2SO_2 + O_2 = 2SO_3;$ $SO_3 + H_2O = H_2SO_4;$

 $H_2SO_4 + KOH = KHSO_4 + H_2O;$ $2KHSO_4 = K_2S_2O_8 + H_2;$ $2KHSO_4 = K_2S_2O_7 + H_2O.$

4. Эта реакция идёт количественно и с изменением окраски раствора, что позволяет использовать ее для определения количества вещества методом титрования (иодометрический метод анализа). Определять можно не только сами реагенты (иод и тиосульфат), но и другие вещества, обладающие окислительно-восстановительными свойствами.

Система оценивания:

1. Формулы по 0,5 б., названия по 0,5 б.	$(0.5+0.5)\times 18 = 18 6.$
2. Структурные формулы по 1 б.	$1 \times 8 = 8 6$.
3. Уравнения реакций по 0,5 б.	$0.5 \times 16 = 8 6.$
4. Количественное определение иода 1 б.	1 б.
Всего	35 баллов

Задание 3. (авторы А.И. Губанов, В.А. Емельянов).

- 1. Элемент X кремний. В подавляющем большинстве природных веществ кремний связан непосредственно с кислородом. Координационное число кремния в этих соединениях всегда равно 4, геометрия частиц тетраэдры, связанные общими вершинами.
- **2.** Главное свойство кремния он «полупроводник»: значение его удельной электропроводности существенно меньше, чем у металлов, но значительно больше, чем у диэлектриков. Количество «девяток» показатель чистоты продукта. «Девять девяток» сверхчистый продукт с содержанием основного вещества 99,999999 %, то есть содержание примесей не более 10^{-7} %.
- **3.** Тут Дэн Браун, однако, погорячился. Ни сам кремний, ни его оксид не являются ядами вследствие крайне низкой реакционной способности. Зато хлорид и сульфид, легко гидролизующиеся даже парами воды с образованием хлороводорода и сероводорода, безусловно, крайне ядовиты:

$$SiCl_{4} + (x+2)H_{2}O = 4HCl \uparrow + SiO_{2}*xH_{2}O, \ SiS_{2} + (x+2)H_{2}O = 2H_{2}S \uparrow + SiO_{2}*xH_{2}O.$$

- **4.** $SiF_4 + 4K = 4KF + Si$ [1], $K_2SiF_6 + 4K = 6KF + Si$ [2], $SiO_2 + 2Mg = 2MgO + Si$ [3], $MgO + 2HCl = MgCl_2 + 2H_2O$ [4], $Si + 2Cl_2 = SiCl_4$ [6], $SiCl_4 + 2H_2 = 4HCl + Si$ [7], $SiCl_4 + Zn = 2ZnCl_2 + Si$ [8].
- **5.** При соотношении масс 5:2 на 60 г SiO₂ (1 моль) требуется 60*2/5 = 24 г (2 моля) С. Следовательно, основной продукт окисления углерода CO: SiO₂ + 2C = Si + 2CO \uparrow [5]. Однако углерод может окисляться и до углекислого газа SiO₂ + C = Si + CO₂ \uparrow [5*]. Тогда некоторая его часть действительно останется в избытке, и будет реагировать с кремнием: Si + C = SiC [5**]. Тогда вещество **Б** SiC, карбид кремния.
- **6.** Для оценки воспользуемся целыми значениями атомных масс. Из 600 кг (10^4 моль) SiO₂ должно было получиться 10^4 моль (280 кг) кремния. Следовательно, 292-280=12 кг в полученном пеке приходится на углерод (10^3 моль), который связан с кремнием в карбид кремния. Его получилось 10^3 моль или 40 кг, т.е. его содержание в пеке 100*40/292=13,7 масс. %. Выход кремния составил $100*(10^4-10^3)/10^4=90$ % = 100*(292-40)/280.
- 7. По реакциям [6] и [6*] 600 кг песка прореагировали с 240-12 = 228 кг углерода. Следовательно, с 240 кг углерода по этим реакциям прореагирует $600*240/228 \approx 632$ кг песка. Таким образом, чтобы выход кремния оказался близок к 100 %, к нашей смеси следует добавить 32 кг песка.
- **8.** Карбид кремния, обладающий высокой твердостью и повышенной термической и химической устойчивостью, имеет техническое название карборунд. Простейший способ его получения спекание кремнезема с коксом: $SiO_2 + 3C$ $\xrightarrow{1600}$ $\xrightarrow{-2500}$ $\xrightarrow{\circ}$ C \rightarrow $SiC + 3CO \uparrow$.

9. Присоединив нейтрон, стабильный изотоп кремния увеличивает массу, но сохраняет заряд ядра, т.е. остается атомом кремния. Излучив β -частицу, т.е. превратив один из нейтронов в протон и электрон, он сохраняет массу, но увеличивает заряд ядра на 1 и превращается в атом фосфора, у которого по условию только один стабильный изотоп. Таким образом, \mathbf{Y} – фосфор. Значение атомной массы фосфора в ПС однозначно указывает на то, что этот изотоп 31 P. Следовательно, превращениям подвергался изотоп 30 Si. Уравнения описанных ядерных реакций:

$$^{30}_{14}$$
 Si $^{+}$ $^{1}_{0}$ n \longrightarrow $^{31}_{14}$ Si $^{+}$ $^{11}_{14}$ Si $^{-}$ \longrightarrow $^{31}_{15}$ P $^{+}$ $^{-}$ 0 β $^{-}$.

- **10.** Поскольку один из стабильных изотопов кремния это 30 Si, а природные изотопы по массе отличаются на 1, следовательно, остальные 2 природных изотопа это 28 Si и 29 Si (мы уже знаем, что 31 Si нестабилен). Из значения атомной массы Si (28,0855 а.е.м.) понятно, что 92,27 масс. % это содержание 28 Si. Посчитаем, сколько его содержится в нашем монокристалле: 0,9227*5617 = 5182,8 г или 5182,8/28 = 185,1 моля. Общее количество кремния в кристалле 5617/28,0855 = 200 молей. Обозначив количество молей 30 Si за x, составим уравнение: 185,1*28 + (200 185,1 x)*29 + x*30 = 5617 или (14,9 x)*29 + x*30 = 434,2. Отсюда x = 2,1 моля.
- а) При полном превращении 30 Si в 31 P его атомов получится тоже 2,1 моля или 2,1*6*10²³ = 1,26*10²⁴ шт. Масса монокристалла увеличится на 2,1 г и составит 5619,1 г, а масса 31 P в нем составит 2,1*31 = 65,1 г. Максимальное содержание 31 P в монокристалле 100*65,1/5619,1 = 1,16 %.
- б) За каждый период полураспада количество радиоактивных изотопов уменьшается в 2 раза, а за n периодов в 2^n раз. $2^n = 10^{23} = 2^{(23/0,301)} = 2^{76,41}$. Отсюда n = 76,41, $t = 76,41*2,6 = 198,7 \approx 200$ часов.

Система оценивания:

Системи оценивания:	
1. Кремний 1 б., связан с кислородом 1 б., КЧ 1 б., тетраэдры 1 б.	1+1+1+1=46.
2. Полупроводник 1 б., содержание основного вещества 99,9999999 % 2 б., (просто «чистота» 1 б.)	1+2=3 6.
3. Верное указание ядовит/нет по 0,5 б., низкая реакционная способность (инертность) кремния и оксида по 0,5 б., уравнения реакций по 1 б.	$0.5 \times (4+2) + 2 = 5 6.$
4. Уравнения реакций по 1 б.	1×7 = 7 б.
5. Формула и название по 1 б., уравнения реакций по 1 б.	$1 \times 2 + 1 \times 3 = 5 6$.
6. Массовая доля Б в пеке 2 б., выход вещества А 2 б.	2+2=46.
7. Добавить песок 1 б., его масса 2 б.	1+2=3 6.
8. Способ получения 1 б., техническое название 0,5 б., свойства по 0,5 б.	$1+0.5+0.5\times 3=3$ 6.
9. Фосфор 1 б., уравнения реакций по 1 б.	$1+1\times 2=3 6.$
10. Максимальное содержание в масс. % и шт. атомов по 2 б., время 2 б.	$2\times 3=6\;6.$
Всего	43 балла

Задание 4. (авторы Т. М. Карнаухов, А. С. Недогибченко, В.Н. Конев).

- **1.** Бертолетова соль хлорат калия $KClO_3$, хромпик дихромат калия $K_2Cr_2O_7$, сера S, мел карбонат кальция $CaCO_3$, кварц диоксид кремния SiO_2 , свинцовый сурик оксид свинца(II, IV) Pb_3O_4 , цинковые белила оксид цинка ZnO, антимонит сульфид сурьмы (III) Sb_2S_3 , красный фосфор P_n (можно просто P), железный сурик оксид железа(III) Fe_2O_3 .
- 2. Возможные уравнения реакций:

$$5KClO_3 + 6P \rightarrow 5KCl + 3P_2O_5$$
; $5K_2Cr_2O_7 + 6P \rightarrow 5Cr_2O_3 + 10K_3PO_4 + 2P_4O_{10}$; $KClO_3 + Sb_2S_3 \rightarrow Sb_2O_5 + KCl + SO_2\uparrow$; $5K_2Cr_2O_7 + Sb_2S_3 \rightarrow 5Cr_2O_3 + Sb_2O_5 + 2P_4O_{10}$; $2KClO_3 + 3S \rightarrow 2KCl + 3SO_2\uparrow$; $K_2Cr_2O_7 + S \rightarrow Cr_2O_3 + K_2SO_4$ и т.д.

- **3.** Получение луца только из воды наводит на мысль о том, что это молекулярный водород. В самом деле, из 18 мл воды можно получить 2 г водорода. Синтез без использования дополнительных реагентов электролиз в присутствии щелочи: $2H_2O \rightarrow 2H_2 + O_2$.
- **4.** Бак пепелаца гораздо более целесообразно заполнять *жидким* луцем, т. к. жидкость занимает значительно меньший объём, чем такое же количество газа. Покажем это расчётами дальности полёта

пепелаца при полном баке газообразного и жидкого луца (возможно подтверждение и другими разумными расчётами).

Жидкий луц. $m = 44.8 \text{ л} \cdot 10^3 \cdot 0.07 \text{ г/мл} = 3136 \text{ г} = 3.136 \text{ кг}$, что составляет 3.136/0.769 = 4 заряда, каждого из которых хватает на 160 км, т.е. на полном баке жидкого луца пепелац пролетит 640 км.

При сгорании 3136 г H_2 образуется $3136/2 \cdot 18 = 28224$ мл = 28,224 л жидкой воды.

5. Желтый. Бензол под действием нитрующей смеси превращается в нитробензол **A**, который восстанавливают цинком в соляной кислоте до хлорида анилиния. Обработка щелочью соли анилина переводит его в свободное основание — анилин **B**. Ацилирование анилина уксусным ангидиридом приводит к образованию ацетанилида **C**.

Нитрование ацетанилида C происходит преимущественно в n-положение (стерический эффект) с образованием 4-нитроацетанилида, который гидролизуется под действием щелочи до 4-нитроанилина D. Диазотирование 4-нитроанилина азотистой кислотой (нитрит натрия и соляная кислота при охлаждении) приводит к получению соли диазония E. Реакция замещения диазогруппы соли диазония E на атом хлора протекает с образованием 4-хлорнитробензола E. Гидросульфид натрия использовался для восстановления нитрогруппы соединения E в 4-хлоранилин E.

C
$$\frac{1) \text{ HNO}_{3,}}{H_2 \text{ SO}_4}$$
 $\frac{\text{NaNO}_2}{H^+, 0 \, ^{\circ}\text{C}}$ $\frac{\text{HCl}}{\text{CuCl}}$ $\frac{\text{NaHS}}{H_2 \text{O}}$ $\frac{\text{NaHS}}{H_2 \text{O}}$

Ацилированием амина G уксусным ангидридом получают амид H, который нитруют с образованием нитроамина I, после гидролиза щелочным раствором. На заключительной стадии происходит конденсация амина I с формальдегидом с образованием конечного диамина.

$$\mathbf{G} \xrightarrow{\text{CH}_3\text{CO})_2\text{O}} \xrightarrow{\text{HN}} \xrightarrow{\text{O}} \xrightarrow{\text{I) HNO}_3, \quad \text{NH}_2} \\ \mathbf{G} \xrightarrow{\text{CCH}_3\text{CO})_2\text{O}} \xrightarrow{\text{O}} \xrightarrow{\text{II}} \\ \mathbf{C}_8\text{H}_8\text{CINO} \xrightarrow{\text{CI}} \mathbf{I} \\ \mathbf{C}_8\text{H}_8\text{CINO} \xrightarrow{\text{C}_6\text{H}_5\text{CIN}_2\text{O}_2}$$

$$\begin{array}{c|c} & NH_2 \\ \hline & NO_2 & HCHO \\ \hline & I & \\ & C_6H_5CIN_2O_2 \end{array}$$

Mалиновый. Под действием сильного основания — амида натрия ацетанилид депротонируется с образованием соли, которую алкилируют этилхлоридом с последующим гидролизом водным раствором щелочи с образованием N-этиланилина \mathbf{K} . На следующей стадии происходит раскрытие оксиранового цикла под действием этиламина с образованием аминоспирта \mathbf{L} .

Взаимодействие соли диазония с аминоспиртом является заключительной стадией получения конечного азосоединения.

Et
$$CH_2CH_2OH$$

$$O_2N \longrightarrow N_2^{\mathfrak{G}} Cl$$

$$O_2N \longrightarrow N=N$$

$$Et$$

$$CH_2CH_2OH$$

$$N=N$$

$$Et$$

Голубой. Окисление нафталина кислородом воздуха над оксидом ванадия является промышленным способом получения фталевого ангидрида **M**. Щелочной гидролиз водной щелочью амида, образующегося из фталевого ангидрида и аммиака, приводит к образованию соли **N**.

Третья стадия представляет собой расщепление амида по Гофману с последующим кислотным гидролизом, в результате чего образуется антраниловая кислота ${\bf 0}$. Следующая стадия — ацилирование аминогруппы с образованием N-ацетилантраниловой кислоты ${\bf P}$.

Нагревание с гидроксидом натрия приводит к замыканию цикла и образованию индоксилата Q.

Нагревание кислоты, образующейся из соли \mathbf{Q} , в кислой среде приводит к декарбоксилированию с образованием кетоамина \mathbf{R} , который легко окисляется кислородом до индиго.

$$Q \xrightarrow{H_3O^+, t, {}^{\circ}C} \xrightarrow{R} \xrightarrow{[O]} \xrightarrow{N} \xrightarrow{[O]} \xrightarrow{N} O$$

1. Формулы веществ по 0,5 б.	$0.5 \times 10 = 5 6.$
2. Уравнения реакций по 1 б.	$1 \times 5 = 5 6$.
3. Состав луца 1 б., способ получения 1 б.	1+1=2 6.
4. Расстояния на газе и на жидком водороде по 1 б., объем воды 1 б.	1+1+1=3 6.
5. Структурные формулы веществ A-R по 1 б.	1×18 = 18 б.
Всего	33 балла

55-я Всесибирская открытая олимпиада школьников Второй отборочный этап 2016-2017 уч. года

Решения заданий по химии

CH₃

10 класс

Задание 1. (авторы Р.А. Бредихин, В.А. Емельянов).

1. Самые тяжелые из стабильных изотопов каждого элемента, входящего в состав молекул витаминов **B**₁ и **B**₂, это 2 H, 13 C, 15 N, 18 O, 36 S, 37 Cl.

Количество протонов n_{p+} в молекуле «тяжелого» \mathbf{B}_1 : 6*12+1*18+17*2+7*4+8+16=176.

Количество протонов n_{p+} в молекуле «тяжелого» $\mathbf{B_2}$: 6*17+1*20+7*4+8*6=198.

Количество нейтронов n_n в молекуле «тяжелого» $\mathbf{B_1}$: 7*12+1*18+20*2+8*4+10+20=204.

Количество нейтронов n_n в молекуле «тяжелого» $\mathbf{B_2}$: 7*17+1*20+8*4+10*6=231.

2. Сначала вычислим молекулярные массы этих витаминов.

Витамин **A**: $M_A = 12*36+1*60+16*2 = 432+60+32 = 524$ a.e.м.

Витамин C: $M_C = 12*6+1*8+16*6 = 72+8+96 = 176$ a.e.м.

В 1 г содержится $6.02*10^{23}$ а.е.м., следовательно, масса одной молекулы витамина **A** составит $524/(6.02*10^{23}) = 8.7*10^{-22}$ г.

В 1 драже содержится 35 мг или $35*10^{-3}$ г витамина C, что составляет $v_C = m_C/M_C = 35*10^{-3}/176 = 1,9886*10^{-4}$ моль или $1,99*10^{-4}*6,02*10^{23} = 1,20*10^{20}$ молекул.

3. Чтобы сравнивать количество молекул, не обязательно считать именно его, достаточно посчитать и сравнить количество каждого вещества в молях. Вычислим молекулярные массы витаминов $\mathbf{B_1}$ и $\mathbf{B_2}$, которые мы еще не считали.

Витамин $\mathbf{B_1}$: $\mathbf{M_{B1}} = 12*12+1*18+35,5*2+14*4+16+32 = 144+18+71+56+16+32 = 337$ а.е.м.

Витамин **B**₂: $M_{B2} = 12*17+1*20+14*4+16*6 = 204+20+56+96 = 376$ a.e.м.

Теперь вычислим количество каждого витамина A, B_1 и B_2 в молях в составе одного драже.

 $v_{A}=1,38*10^{-3}/524=2,63*10^{-6},\ v_{B1}=1*10^{-3}/337=2,97*10^{-6},\ v_{B2}=1*10^{-3}/376=2,66*10^{-6}$ моль.

Таким образом, из предложенных трех витаминов, A, B_1 и B_2 , в составе препарата больше всего молекул витамина A.

4. Количество молекул каждого из витаминов, содержащихся в одном драже препарата, будет равно количеству молей каждого из них, умноженному на число Авогадро.

Следовательно, $n_{\text{молекул}} = 6.02*10^{23}*(\nu_{\text{A}} + \nu_{\text{B1}} + \nu_{\text{B2}} + \nu_{\text{C}}) = 6.02*10^{23}*10^{-6}*(2.63+2.97+2.66+198.86) = 1.25*10^{20}$.

5. Для того, чтобы найти общее количество атомов, сначала надо найти количество атомов в составе каждого из витаминов, а потом сложить эти цифры.

Следовательно, $n_{\text{атомов}} = 6.02*10^{23}*(98\text{VA}+38\text{VB1}+47\text{VB2}+20\text{VC}) = 6.02*10^{23}*10^{-6}*(98*2.63+38*2.97+47*2.66+20*198.86) = 2.69*10^{21}.$

6. По условию задачи весь углерод, входивший в состав витаминов, выделился из организма в виде углекислого газа. Поскольку из одного атома углерода получается одна молекула CO₂, рассчитаем количество углерода, входящего в состав витаминов, для 100 драже.

 $\nu_{\text{CO2}} = \nu_{\text{C}} = 100*(36\nu_{\text{A}} + 12\nu_{\text{B1}} + 17\nu_{\text{B2}} + 6\nu_{\text{C}}) = 100*10^{-6}(36*2,63 + 12*2,97 + 17*2,66 + 6*199) = 0,137$ моль. Масса выделившегося углекислого газа составит 0,137*44 = 6,03 г, его объем при нормальных условиях 0,137*22,4 = 3,07 л.

7. Витамины (от лат. vita – жизнь) – группа органических соединений различной химической природы, необходимых для нормальной жизнедеятельности организма. Требуются организму в ничтожных количествах (по сравнению с белками, жирами, углеводами, солями). Организм животных и человека не синтезирует большинство витаминов или синтезирует их в недостаточном количестве, поэтому должен получать их в готовом виде с пищей. Недостаток витаминов в пище или нарушение процессов

их всасывания и усвоения приводит к нарушениям обмена веществ и гиповитаминозам. Витамины принимают активное участие в обмене веществ как составные части ферментов и как регуляторы отдельных биохимических и физиологических процессов.

Ключевые фразы, оцениваемые баллами:

- 1) Витамины это органические вещества.
- 2) Витамины необходимы организму для нормальной жизнедеятельности, при недостатке витаминов возникают заболевания.
- 3) Потребность организма в витаминах по объему небольшая.
- 4) Поскольку организм не способен производить витамины в достаточном количестве, они должны поступать с питанием.
- **8.** Витамины лучше принимать через четверть часа после еды, так как увеличивается эффективность усвоения жирорастворимых витаминов (например, витамина **A**) под действием секретов, выделяющихся при пищеварении.

Система оценивания:

1. Количество протонов и нейтронов в каждой из молекул по 1 б. (Если один из изотопов выбран неправильно, то за количество нейтронов 0,5 б., если два изотопа выбраны неправильно, то за количество нейтронов 0 б.)	1×4 = 4 6.
2. Масса молекулы 2 б., количество молекул 2 б.	2+2 = 4 6.
3. Верные ответы по 1 б.	1+1=2 6.
4. Общее количество молекул 2 б	2 б.
5. Общее количество атомов 2 б	2 б.
6. Масса CO ₂ 3 б. (за верное количество 2 б.), объем 1 б.	3+1 = 46.
7. Описание термина «витамины» по 0,5 б. за ключевую фразу	$0.5 \times 4 = 2 6.$
8. Пояснение способа приема витаминов 1 б.	1 б.
Всего	21 балл

Задание 2. (автор О.Г. Сальников).

1. Из предисловия к задаче следует, что **X** – сера. Тогда **A** – S_8 (в качестве верного ответа засчитывается и S), **B** – H_2S , **C** – SO_2 . При взаимодействии SO_2 с хлором и PCl_5 образуются сульфурилхлорид SO_2Cl_2 (**N**) и тионилхлорид SO_2Cl_2 (**D**).

Найдём молярные массы M всех неизвестных веществ, для которых дано содержание серы (в расчёте на один атом серы). Для этого используем формулу $M = 32,06/\omega(S)$. Также найдём массу, приходящуюся на все остальные элементы. Получим следующую таблицу:

Вещество	E	I	M	0	P
М, г/моль	40,06	135,16	67,55	96,74	107,51
[M-M(S)], г/моль	8,00	103,10	35,49	64,68	75,45

В бинарном веществе ${\bf E}$ на второй элемент (O, Cl или Ag) приходится только 8 г/моль в расчёте на один атом серы. Тогда единственный возможный вариант – это S_2O .

При окислении SO_2 кислородом образуется SO_3 (**F**), взаимодействие которого с водой приводит к образованию H_2SO_4 (**G**). В реакции серной кислоты с 1 эквивалентом КОН образуется $KHSO_4$ (**H**). Нагревание гидросульфата калия приводит к его дегидратации с образованием дисульфата $K_2S_2O_7$ (**J**). Осталось определить продукт электролиза $KHSO_4$. На остальные элементы (K, H, O) приходится 103,10 г/моль (в расчёте на один атом серы), что соответствует KO_4 . Однако вещество KSO_4 не подходит, так как соединение с таким составом должно иметь серу или кислород с нечётной валентностью. Значит, **I** – это $K_2S_2O_8$.

При взаимодействии с NaOH диоксид серы образует сульфит натрия Na_2SO_3 (**K**). Дальнейшая реакция с серой приводит к получению тиосульфата натрия $Na_2S_2O_3$ (**L**). Взаимодействие $Na_2S_2O_3$ с иодом

приводит к образованию вещества \mathbf{M} . Так как по условию это вещество содержит два типа атомов серы, то их общее количество тоже не меньше двух. Если их два, то на остаток (Na, O или I) приходится $135,1-32,06\cdot 2=70,98$ г/моль. Подбором нетрудно получить, что в остатке атом Na и три атома O. Тогда \mathbf{M} должно иметь формулу NaS₂O₃. Но такой вариант не подходит, так как соединение с таким составом должно иметь серу или кислород с нечётной валентностью. Значит, \mathbf{M} – это Na₂S₄O₆.

Вещество **O** образуется при взаимодействии цинка с SO_2 . На Zn и O приходится 64,68 г/моль (в расчёте на один атом серы), что меньше атомной массы цинка (65,37 а.е.м.) и не так уж и хорошо совпадает с массой четырёх атомов кислорода (к тому же соединение SO_4 выглядит совсем нереалистично, не говоря о том, что по условию **O** содержит три элемента). Значит, **O** содержит два атома серы; тогда его молярная масса 193,48 г/моль, а на Zn и O приходится 193,48 – 32,06·2 = 129,36 г/моль. Такая масса идеально соответствует ZnO_4 ; значит, $O - ZnS_2O_4$.

Вещество **P** образуется при взаимодействии MnO_2 с SO_2 . На Mn и O приходится 75,45 г/моль (в расчёте на один атом серы), что не соответствует ни одной из комбинаций атомов этих элементов. Значит, **P** содержит два атома серы; тогда на Mn и O приходится $215,02 - 32,06 \cdot 2 = 150,9$ г/моль. Такая масса идеально соответствует MnO_6 ; значит, $P - MnS_2O_6$.

Итого: $\mathbf{A} - S_8$ (сера), $\mathbf{B} - H_2S$ (сероводород), $\mathbf{C} - SO_2$ (диоксид серы, оксид серы(IV)), $\mathbf{D} - SOCl_2$ (тионилхлорид), $\mathbf{E} - S_2O$ (монооксид дисеры), $\mathbf{F} - SO_3$ (оксид серы(VI)), $\mathbf{G} - H_2SO_4$ (серная кислота), $\mathbf{H} - KHSO_4$ (гидросульфат калия), $\mathbf{I} - K_2S_2O_8$ (пероксодисульфат калия), $\mathbf{J} - K_2S_2O_7$ (дисульфат калия), $\mathbf{K} - Na_2SO_3$ (сульфит натрия), $\mathbf{L} - Na_2S_2O_3$ (тиосульфат натрия), $\mathbf{M} - Na_2S_4O_6$ (тетратионат натрия), $\mathbf{N} - SO_2Cl_2$ (сульфурилхлорид), $\mathbf{O} - ZnS_2O_4$ (дитионит цинка), $\mathbf{P} - MnS_2O_6$ (дитионат марганца).

2.

3. $S + H_2 = H_2S$;

 $S + O_2 = SO_2$;

 $SO_2 + PCl_5 = SOCl_2 + POCl_3;$

 $SOCl_2 + Ag_2S = S_2O + 2AgCl;$

 $2SO_2 + O_2 = 2SO_3$;

 $SO_3 + H_2O = H_2SO_4;$

 $H_2SO_4 + KOH = KHSO_4 + H_2O;$

 $2KHSO_4 = K_2S_2O_8 + H_2$;

 $2KHSO_4 = K_2S_2O_7 + H_2O;$

 $SO_2 + 2NaOH = Na_2SO_3 + H_2O$;

 $Na_2SO_3 + S = Na_2S_2O_3;$

 $2Na_2S_2O_3 + I_2 = Na_2S_4O_6 + 2NaI;$

 $SO_2 + Cl_2 = SO_2Cl_2$;

 $2SO_2 + Zn = ZnS_2O_4$;

 $MnO_2 + 2SO_2 = MnS_2O_6.$

Система оценивания:

1. Формулы по 0,5 б., названия по 0,5 б.	$(0.5+0.5)\times 16 = 16 6.$
2. Структурные формулы по 1 б.	$1 \times 7 = 7 6.$
3. Уравнения реакций по 1 б.	1×15 = 15 б.
Всего	38 баллов

Задание 3. (авторы А.И. Губанов, В.А. Емельянов).

1. Элемент X – кремний. В подавляющем большинстве природных веществ кремний связан непосредственно с кислородом.

- **2.** Главное свойство кремния он «полупроводник»: значение его удельной электропроводности существенно меньше, чем у металлов, но значительно больше, чем у диэлектриков. Количество «девяток» показатель чистоты продукта. «Девять девяток» сверхчистый продукт с содержанием основного вещества 99,999999 %, то есть содержание примесей не более 10^{-7} %.
- 3. Тут Дэн Браун, однако, погорячился. Ни сам кремний, ни его оксид не являются ядами вследствие крайне низкой реакционной способности.
- **4.** $SiF_4 + 4K = 4KF + Si$ [1], $K_2SiF_6 + 4K = 6KF + Si$ [2], $SiO_2 + 2Mg = 2MgO + Si$ [3], $MgO + 2HCl = MgCl_2 + 2H_2O$ [4], $Si + 2Cl_2 = SiCl_4$ [6], $SiCl_4 + 2H_2 = 4HCl + Si$ [7], $SiCl_4 + Zn = 2ZnCl_2 + Si$ [8].
- **5.** При соотношении масс 5:2 на 60 г SiO₂ (1 моль) требуется 60*2/5 = 24 г (2 моля) С. Следовательно, основной продукт окисления углерода CO: SiO₂ + 2C = Si + 2CO↑ [5]. Однако углерод может окисляться и до углекислого газа SiO₂ + C = Si + CO₂↑ [5*]. Тогда некоторая его часть действительно останется в избытке, и будет реагировать с кремнием: Si + C = SiC [5**]. Тогда вещество \mathbf{F} SiC, карбид кремния.
- **6.** Для оценки воспользуемся целыми значениями атомных масс. Из 600 кг (10^4 моль) SiO₂ должно было получиться 10^4 моль (280 кг) кремния. Следовательно, 292-280 = 12 кг в полученном пеке приходится на углерод (10^3 моль), который связан с кремнием в карбид кремния. Его получилось 10^3 моль или 40 кг, т.е. его содержание в пеке 100*40/292 = 13,7 масс. %. Выход кремния составил $100*(10^4 10^3)/10^4 = 90$ % = 100*(292-40)/280.
- 7. По реакциям [6] и [6*] 600 кг песка прореагировали с 240-12 = 228 кг углерода. Следовательно, с 240 кг углерода по этим реакциям прореагирует $600*240/228 \approx 632$ кг песка. Таким образом, чтобы выход кремния оказался близок к 100%, к нашей смеси следует добавить 32 кг песка.
- **8.** Карбид кремния, обладающий высокой твердостью и повышенной термической и химической устойчивостью, имеет техническое название карборунд. Простейший способ его получения спекание кремнезема с коксом: $SiO_2 + 3C$ $\xrightarrow{1600}$ $\xrightarrow{-2500}$ $\xrightarrow{\circ}$ C \rightarrow $SiC + 3CO \uparrow$.
- **9.** Схема транспортной реакции: $Si + 2I_2 \xrightarrow{500}$ $^{\circ}C$ \rightarrow $SiI_4 \xrightarrow{1000}$ $^{\circ}C$ \rightarrow $Si + 2I_2$.
- **10.** Присоединив нейтрон, стабильный изотоп кремния увеличивает массу, но сохраняет заряд ядра, т.е. остается атомом кремния. Излучив β -частицу, т.е. превратив один из нейтронов в протон и электрон, он сохраняет массу, но увеличивает заряд ядра на 1 и превращается в атом фосфора, у которого по условию только один стабильный изотоп. Таким образом, \mathbf{Y} фосфор. Значение атомной массы фосфора в ПС однозначно указывает на то, что этот изотоп 31 P. Следовательно, превращениям подвергался изотоп 30 Si. Уравнения описанных ядерных реакций:

1. Кремний 2 б., связан с кислородом 2 б.	2+2=46.
2. Полупроводник 1 б., содержание основного вещества 99,9999999 % 2 б.,	1+2=3 6.
(просто «чистота» 1 б.)	1+2=3 0.
3. Не ядовиты 1 б., низкая реакционная способность (инертность) 1 б.	1+1=2 6.
4. Уравнения реакций по 1 б.	1×7 = 7 б.
5. Формула и название по 1 б., уравнения реакций по 1 б.	$1 \times 2 + 1 \times 3 = 5 6.$
6. Массовая доля Б в пеке 2 б., выход вещества A 2 б.	2+2 = 4 6.
7. Добавить песок 1 б., его масса 2 б.	1+2=3 6.
8. Способ получения с указанием температуры в нужном интервале 2 б. (просто нагревание 1 б.), техническое название 0.5 б., свойства по 0.5 б.	$2+0.5+0.5\times 3=4$ 6.
9. Схема транспортной реакции 2 б.	2 б.
10. Фосфор 2 б., уравнения реакций по 1 б.	$2+1\times 2=46$.
Всего	38 баллов

Задание 4. (авторы Т.М. Карнаухов, А.С. Недогибченко, В.Н. Конев).

- **1.** Бертолетова соль хлорат калия $KClO_3$, хромпик дихромат калия $K_2Cr_2O_7$, сера S, мел карбонат кальция $CaCO_3$, кварц диоксид кремния SiO_2 , свинцовый сурик оксид свинца(II, IV) Pb_3O_4 , цинковые белила оксид цинка ZnO, антимонит сульфид сурьмы (III) Sb_2S_3 , красный фосфор P_n (можно просто P), железный сурик оксид железа(III) Fe_2O_3 .
- 2. Возможные уравнения реакций:

$$5KClO_3 + 6P \rightarrow 5KCl + 3P_2O_5$$
; $5K_2Cr_2O_7 + 6P \rightarrow 5Cr_2O_3 + 10K_3PO_4 + 2P_4O_{10}$;

$$KClO_3 + Sb_2S_3 \rightarrow Sb_2O_5 + KCl + SO_2\uparrow$$
; $5K_2Cr_2O_7 + Sb_2S_3 \rightarrow 5Cr_2O_3 + Sb_2O_5 + 2P_4O_{10}$;

$$2KClO_3 + 3S \rightarrow 2KCl + 3SO_2\uparrow$$
; $K_2Cr_2O_7 + S \rightarrow Cr_2O_3 + K_2SO_4$ и т.д.

- 3. Получение луца только из воды наводит на мысль о том, что это молекулярный водород. В самом деле, из 18 мл воды можно получить 2 г водорода. Синтез без использования дополнительных реагентов электролиз в присутствии щелочи: $2H_2O \rightarrow 2H_2 + O_2$.
- **4.** Бак пепелаца гораздо более целесообразно заполнять *жидким* луцем, т. к. жидкость занимает значительно меньший объём, чем такое же количество газа. Покажем это расчётами дальности полёта пепелаца при полном баке газообразного и жидкого луца (возможно подтверждение и другими разумными расчётами).

 $\mathcal{K}u\partial\kappa u\ddot{u}$ луu.m = 44,8 л · 10^3 · 0,07 г/мл = 3136 г = 3,136 кг, что составляет 3,136/0,769 = 4 заряда, каждого из которых хватает на 160 км, т.е. на полном баке жидкого луца пепелац пролетит 640 км.

При сгорании 3136 г H_2 образуется $3136/2 \cdot 18 = 28224$ мл = 28,224 л жидкой воды.

5. Желтый. Бензол под действием нитрующей смеси превращается в нитробензол **A**, который восстанавливают цинком в соляной кислоте до хлорида анилиния. Обработка щелочью соли анилина переводит его в свободное основание – анилин **B**. Ацилирование анилина уксусным ангидиридом приводит к образованию ацетанилида **C**.

Нитрование ацетанилида \mathbf{C} происходит преимущественно в n-положение (стерический эффект) с образованием 4-нитроацетанилида, который гидролизуется под действием щелочи до 4-нитроанилина \mathbf{D} . Диазотирование 4-нитроанилина азотистой кислотой (нитрит натрия и соляная кислота при охлаждении) приводит к получению соли диазония \mathbf{E} . Реакция замещения диазогруппы соли диазония \mathbf{E} на атом хлора протекает с образованием 4-хлорнитробензола \mathbf{F} . Гидросульфид натрия использовался для восстановления нитрогруппы соединения \mathbf{F} в 4-хлоранилин \mathbf{G} .

$$C \xrightarrow{\begin{array}{c} 1) \text{ HNO}_{3,} \\ \text{H}_2\text{SO}_4 \\ \hline 2) \text{ OH}^\text{-}, \text{H}_2\text{O} \end{array}} \xrightarrow{\begin{array}{c} \text{NaNO}_2 \\ \text{H}^+, 0 \, ^\circ\text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{NaNO}_2 \\ \text{E} \end{array}} \xrightarrow{\begin{array}{c} \text{NO}_2 \\ \text{F} \end{array}} \xrightarrow{\begin{array}{c} \text{NaHS} \\ \text{Ni}_2\text{O} \\ \text{Ni}_2\text{O} \end{array}} \xrightarrow{\begin{array}{c} \text{NaHS} \\ \text{Ni}_2\text{O} \end{array}} \xrightarrow{\begin{array}{c} \text{Ni}_2\text{O} \\ \text{Ni}_2$$

Ацилированием амина \mathbf{G} уксусным ангидридом получают амид \mathbf{H} , который нитруют с образованием нитроамина \mathbf{I} , после гидролиза щелочным раствором. На заключительной стадии происходит конденсация амина \mathbf{I} с формальдегидом с образованием конечного диамина.

$$\mathbf{G} \xrightarrow{\mathrm{CH_3CO)_2O}} \mathbf{O} \xrightarrow{\mathrm{HN}} \mathbf{O} \xrightarrow{\mathrm{I}) \ \mathrm{HNO_{3,}}} \mathbf{NH_2} \\ \mathbf{H}_2\mathrm{SO_4} \xrightarrow{\mathrm{I}} \mathbf{NO_2} \\ \mathbf{Cl} \qquad \mathbf{H} \qquad \mathbf{Cl} \qquad \mathbf{I} \\ \mathbf{C}_8\mathrm{H_8CINO} \qquad \mathbf{Cl} \mathbf{H}_2\mathrm{CO} \mathbf{I} \\ \mathbf{NH_2} \qquad \mathbf{NH_2} \\ \mathbf{NO_2} \qquad \mathbf{NH_2} \qquad \mathbf{NH} - \mathbf{CH_2} - \mathbf{NH} - \mathbf{Cl} \\ \mathbf{Cl} \qquad \mathbf{NH} - \mathbf{CH_2} - \mathbf{NH} - \mathbf{Cl} \\ \mathbf{Cl} \qquad \mathbf{NO_2} \qquad \mathbf{NH} - \mathbf{Cl} \\ \mathbf{Cl} \qquad \mathbf{NO_2} \qquad \mathbf{NH} - \mathbf{Cl} \\ \mathbf{NO_2} \qquad \mathbf{NH} - \mathbf{Cl} \\ \mathbf{NO_2} \qquad \mathbf{NO_2} \qquad \mathbf{NH} - \mathbf{Cl} \\ \mathbf{NH} - \mathbf{Cl} \qquad \mathbf{NH} - \mathbf{Cl} \\ \mathbf{NH} - \mathbf{Cl} \qquad \mathbf{NH} - \mathbf{Cl} \\ \mathbf{NH} - \mathbf{Cl} \qquad \mathbf{NH} - \mathbf{Cl}$$

Mалиновый. Под действием сильного основания — амида натрия ацетанилид депротонируется с образованием соли, которую алкилируют этилхлоридом с последующим гидролизом водным раствором щелочи с образованием N-этиланилина \mathbf{K} . На следующей стадии происходит раскрытие оксиранового цикла под действием этиламина с образованием аминоспирта \mathbf{L} .

Взаимодействие соли диазония с аминоспиртом является заключительной стадией получения конечного азосоединения.

Et
$$CH_2CH_2OH$$

$$O_2N \longrightarrow N_2 Cl$$

$$O_2N \longrightarrow N=N$$

$$Et$$

$$CH_2CH_2OH$$

$$Et$$

$$CH_2CH_2OH$$

Голубой. Окисление нафталина кислородом воздуха над оксидом ванадия является промышленным способом получения фталевого ангидрида **M**. Щелочной гидролиз водной щелочью амида, образующегося из фталевого ангидрида и аммиака, приводит к образованию соли **N**.

Третья стадия представляет собой расщепление амида по Гофману с последующим кислотным гидролизом, в результате чего образуется антраниловая кислота $\mathbf{0}$. Следующая стадия — ацилирование аминогруппы с образованием N-ацетилантраниловой кислоты \mathbf{P} .

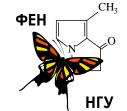
O
$$CI \longrightarrow ONa$$
 $ONa \longrightarrow ONa$ ONA

Нагревание с гидроксидом натрия приводит к замыканию цикла и образованию индоксилата Q.

Нагревание кислоты, образующейся из соли \mathbf{Q} , в кислой среде приводит к декарбоксилированию с образованием кетоамина \mathbf{R} , который легко окисляется кислородом до индиго.

$$Q \xrightarrow{H_3O^+, t, {}^{\circ}C} \xrightarrow{R} \xrightarrow{[O]} \xrightarrow{H} O$$

$$R$$


$$C_8H_7NO$$

1. Формулы веществ по 0,5 б.	$0.5 \times 10 = 5 6.$
2. Уравнения реакций по 1 б.	$1 \times 5 = 5 6$.
3. Состав луца 1 б., способ получения 1 б.	1+1=26.
4. Расстояния на газе и на жидком водороде по 1 б., объем воды 1 б.	1+1+1=3 6.
5. Структурные формулы веществ A-R по 1 б.	1×18 = 18 б.
Всего	33 балла

55-я Всесибирская открытая олимпиада школьников Второй отборочный этап 2016-2017 уч. года

Решения заданий по химии

9 класс

Задание 1. (авторы Р.А. Бредихин, В.А. Емельянов).

1. Количество протонов определяет заряд ядра и совпадает с порядковым номером элемента в Периодической системе. Массовое число изотопа складывается из суммы числа протонов и нейтронов. Для того чтобы определить количество нейтронов, необходимо из массового числа изотопа вычесть количество протонов. Количество электронов в электронейтральном атоме (атом как целое не имеет электрического заряда) равно количеству протонов, причем, в то время как протоны и нейроны сконцентрированы в ядре, электроны находятся вне его и занимают большую часть объёма атома. В состав ядра атома электроны не входят.

	Состав ядра			Состав атома		
Изотоп	¹ H	³² S	³⁷ Cl	¹³ C	15N	¹⁸ O
Протоны	1	16	17	6	7	8
Нейтроны	0	16	20	7	8	10
Электроны	0	0	0	6	7	8

2. Самые распространенные на Земле изотопы элементов, входящих в состав молекул витаминов B_1 и B_2 , это 1H , ${}^{12}C$, ${}^{14}N$, ${}^{16}O$, ${}^{32}S$, ${}^{35}Cl$.

Количество протонов n_{p+} в молекуле **B**₁: 6*12+1*18+17*2+7*4+8+16=176.

Количество протонов n_{D+} в молекуле **B**₂: 6*17+1*20+7*4+8*6=198.

Количество нейтронов n_n в молекуле $\mathbf{B_1}$: 6*12+18*2+7*4+8+16=160.

Количество нейтронов n_n в молекуле $\mathbf{B_2}$: 6*17+7*4+8*6=178.

3. Согласно определению массовой доли $\omega = m_{\text{вещества}} / m_{\text{смеси}}$.

Витамин **A**: $m_A / m_{\Sigma} = 1{,}38/500 = 0{,}00276$ или $0{,}276$ %;

Витамин **B**₁: $m_{\text{B1}} / m_{\Sigma} = 1,0/500 = 0,002$ или 0,2 %;

Витамин **B**₂: $m_{\text{B2}} / m_{\Sigma} = 1,0/500 = 0,002$ или 0,2 %;

Витамин **C**: $m_C / m_\Sigma = 35,0/500 = 0,07$ или 7 %.

4. Сначала вычислим молекулярные массы этих витаминов.

Витамин **A**: $M_A = 12*36+1*60+16*2 = 432+60+32 = 524$ a.e.м.

Витамин **C**: $M_C = 12*6+1*8+16*6 = 72+8+96 = 176$ а.е.м.

В 1 г содержится $6.02*10^{23}$ а.е.м., следовательно, масса одной молекулы витамина **A** составит $524/(6.02*10^{23}) = 8.7*10^{-22}$ г.

В 1 драже содержится 35 мг или $35*10^{-3}$ г витамина C, что составляет $v_C = m_C/M_C = 35*10^{-3}/176 = 1,9886*10^{-4}$ моль или $1,99*10^{-4}*6,02*10^{23} = 1,20*10^{20}$ молекул.

5. Чтобы сравнивать количество молекул, не обязательно считать именно его, достаточно посчитать и сравнить количество каждого вещества в молях. Вычислим молекулярные массы витаминов \mathbf{B}_1 и \mathbf{B}_2 , которые мы еще не считали.

Витамин $\mathbf{B_1}$: $\mathbf{M_{B1}} = 12*12+1*18+35,5*2+14*4+16+32 = 144+18+71+56+16+32 = 337$ а.е.м.

Витамин $\mathbf{B_2}$: $\mathbf{M_{B2}} = 12*17+1*20+14*4+16*6 = 204+20+56+96 = 376$ a.e.м.

Теперь вычислим количество каждого витамина A, B_1 и B_2 в молях в составе одного драже.

 $v_A = 1.38*10^{-3}/524 = 2.63*10^{-6}$, $v_{B1} = 1*10^{-3}/337 = 2.97*10^{-6}$, $v_{B2} = 1*10^{-3}/376 = 2.66*10^{-6}$ моль.

Таким образом, из предложенных трех витаминов, A, B_1 и B_2 , в составе препарата больше всего молекул витамина A.

6. Количество молекул каждого из витаминов, содержащихся в одном драже препарата, будет равно количеству молей каждого из них, умноженному на число Авогадро.

Следовательно,
$$n_{\text{молекул}} = 6.02*10^{23}*(\nu_{\text{A}} + \nu_{\text{B1}} + \nu_{\text{B2}} + \nu_{\text{C}}) = 6.02*10^{23}*10^{-6}*(2.63+2.97+2.66+198.86) = 1.25*10^{20}$$
.

7. Для того, чтобы найти общее количество атомов, сначала надо найти количество атомов в составе каждого из витаминов, а потом сложить эти цифры.

Следовательно,
$$n_{\text{атомов}} = 6.02*10^{23}*(98\nu_{\text{A}} + 38\nu_{\text{B1}} + 47\nu_{\text{B2}} + 20\nu_{\text{C}}) =$$

= $6.02*10^{23}*10^{-6}*(98*2.63 + 38*2.97 + 47*2.66 + 20*198.86) = 2.69*10^{21}$.

8. По условию задачи весь углерод, входивший в состав витаминов, выделился из организма в виде углекислого газа. Поскольку из одного атома углерода получается одна молекула CO₂, рассчитаем количество углерода, входящего в состав витаминов, для 100 драже.

 $v_{\text{CO2}} = v_{\text{C}} = 100*(36v_{\text{A}} + 12v_{\text{B1}} + 17v_{\text{B2}} + 6v_{\text{C}}) = 100*10^{-6}(36*2,63 + 12*2,97 + 17*2,66 + 6*199) = 0,137$ моль. Масса выделившегося углекислого газа составит 0,137*44 = 6,03 г, его объем при нормальных условиях 0,137*22,4 = 3,07 л.

Система оценивания:

1. Составы ядер и атомов по 1 б.	1×6 = 6 6 .
2. Количество протонов и нейтронов в каждой из молекул по 1 б.	1×4 = 4 6 .
3. Массовые доли каждого витамина по 1 б.	1×4 = 4 б.
4. Масса молекулы 2 б., количество молекул 2 б.	2+2=46.
5. Верные ответы по 1 б.	1+1=26.
6. Общее количество молекул 2 б	2 6.
7. Общее количество атомов 2 б	2 6.
8. Масса CO ₂ 3 б. (за верное количество 2 б.), объем 1 б.	3+1=46.
Всего	28 баллов

Задание 2. (автор О.Г. Сальников).

1. Из предисловия к задаче следует, что **X** – сера. Тогда **A** – S_8 (в качестве верного ответа засчитывается и S), **B** – H_2S , **C** – SO_2 . При взаимодействии SO_2 с хлором и PCl_5 образуются сульфурилхлорид SO_2Cl_2 (**N**) и тионилхлорид $SOCl_2$ (**D**).

Найдём молярные массы M всех неизвестных веществ, для которых дано содержание серы (в расчёте на один атом серы). Для этого используем формулу $M=32,06/\omega(S)$. Также найдём массу, приходящуюся на все остальные элементы. Получим следующую таблицу:

Вещество	E	I	M	0	P
М, г/моль	40,06	135,16	67,55	96,74	107,51
[M-M(S)], г/моль	8,00	103,10	35,49	64,68	75,45

В бинарном веществе E на второй элемент (O, Cl или Ag) приходится только 8 г/моль в расчёте на один атом серы. Тогда единственный возможный вариант – это S_2O .

При окислении SO_2 кислородом образуется SO_3 (**F**), взаимодействие которого с водой приводит к образованию H_2SO_4 (**G**). В реакции серной кислоты с 1 эквивалентом КОН образуется KHSO₄ (**H**). Нагревание гидросульфата калия приводит к его дегидратации с образованием дисульфата $K_2S_2O_7$ (**J**). Осталось определить продукт электролиза KHSO₄. На остальные элементы (K, H, O) приходится 103,10 г/моль (в расчёте на один атом серы), что соответствует KO_4 . Однако вещество KSO_4 не подходит, так как соединение с таким составом должно иметь серу или кислород с нечётной валентностью. Значит, I – это $K_2S_2O_8$.

При взаимодействии с NaOH диоксид серы образует сульфит натрия Na_2SO_3 (**K**). Дальнейшая реакция с серой приводит к получению тиосульфата натрия $Na_2S_2O_3$ (**L**). Взаимодействие $Na_2S_2O_3$ с иодом приводит к образованию вещества **M**. Так как по условию это вещество содержит два типа атомов се-

ры, то их общее количество тоже не меньше двух. Если их два, то на остаток (Na, O или I) приходится $135,1-32,06\cdot 2=70,98$ г/моль. Подбором нетрудно получить, что в остатке атом Na и три атома O. Тогда **M** должно иметь формулу NaS_2O_3 . Но такой вариант не подходит, так как соединение с таким составом должно иметь серу или кислород с нечётной валентностью. Значит, **M** – это $Na_2S_4O_6$.

Вещество \mathbf{O} образуется при взаимодействии цинка с SO_2 . На Zn и O приходится 64,68 г/моль (в расчёте на один атом серы), что меньше атомной массы цинка (65,37 а.е.м.) и не так уж и хорошо совпадает с массой четырёх атомов кислорода (к тому же соединение SO_4 выглядит совсем нереалистично, не говоря о том, что по условию \mathbf{O} содержит три элемента). Значит, \mathbf{O} содержит два атома серы; тогда его молярная масса 193,48 г/моль, а на Zn и O приходится $193,48 - 32,06 \cdot 2 = 129,36$ г/моль. Такая масса идеально соответствует ZnO_4 ; значит, $\mathbf{O} - ZnS_2O_4$.

Вещество **P** образуется при взаимодействии MnO_2 с SO_2 . На Mn и O приходится 75,45 г/моль (в расчёте на один атом серы), что не соответствует ни одной из комбинаций атомов этих элементов. Значит, **P** содержит два атома серы; тогда на Mn и O приходится $215,02 - 32,06 \cdot 2 = 150,9$ г/моль. Такая масса идеально соответствует MnO_6 ; значит, $P - MnS_2O_6$.

Итого: $\mathbf{A} - S_8$ (сера), $\mathbf{B} - H_2S$ (сероводород), $\mathbf{C} - SO_2$ (диоксид серы, оксид серы(IV)), $\mathbf{D} - SOCl_2$ (тионилхлорид), $\mathbf{E} - S_2O$ (монооксид дисеры), $\mathbf{F} - SO_3$ (оксид серы(VI)), $\mathbf{G} - H_2SO_4$ (серная кислота), $\mathbf{H} - KHSO_4$ (гидросульфат калия), $\mathbf{I} - K_2S_2O_8$ (пероксодисульфат калия), $\mathbf{J} - K_2S_2O_7$ (дисульфат калия), $\mathbf{K} - Na_2SO_3$ (сульфит натрия), $\mathbf{L} - Na_2S_2O_3$ (тиосульфат натрия), $\mathbf{M} - Na_2S_4O_6$ (тетратионат натрия), $\mathbf{N} - SO_2Cl_2$ (сульфурилхлорид), $\mathbf{O} - ZnS_2O_4$ (дитионит цинка), $\mathbf{P} - MnS_2O_6$ (дитионат марганца).

2.

3. $S + H_2 = H_2S$; $S + O_2 = SO_2$; $SO_2 + PCl_5 = SOCl_2 + POCl_3$;

 $SOCl_2 + Ag_2S = S_2O + 2AgCl;$ $2SO_2 + O_2 = 2SO_3;$ $SO_3 + H_2O = H_2SO_4;$

 $H_2SO_4 + KOH = KHSO_4 + H_2O;$ $2KHSO_4 = K_2S_2O_8 + H_2;$ $2KHSO_4 = K_2S_2O_7 + H_2O;$

 $SO_2 + 2NaOH = Na_2SO_3 + H_2O;$ $Na_2SO_3 + S = Na_2S_2O_3;$

 $2Na_2S_2O_3 + I_2 = Na_2S_4O_6 + 2NaI;$ $SO_2 + Cl_2 = SO_2Cl_2;$ $2SO_2 + Zn = ZnS_2O_4;$

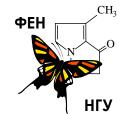
 $MnO_2 + 2SO_2 = MnS_2O_6$.

Система оценивания:

1. Формулы по 0,5 б., названия по 0,5 б.	$(0.5+0.5)\times 16 = 16 6.$
2. Структурные формулы по 1 б.	$1 \times 7 = 7 6$.
3. Уравнения реакций по 1 б.	$1 \times 15 = 15 6.$
Всего	38 баллов

Задание 3. (авторы А.И. Губанов, В.А. Емельянов).

1. Элемент X – кремний. В подавляющем большинстве природных веществ кремний связан непосредственно с кислородом.


- **2.** Главное свойство кремния он «полупроводник»: значение его удельной электропроводности существенно меньше, чем у металлов, но значительно больше, чем у диэлектриков. Количество «девяток» показатель чистоты продукта. «Девять девяток» сверхчистый продукт с содержанием основного вещества 99,999999 %, то есть содержание примесей не более 10^{-7} %.
- 3. Тут Дэн Браун, однако, погорячился. Ни сам кремний, ни его оксид не являются ядами вследствие крайне низкой реакционной способности.
- **4.** $SiF_4 + 4K = 4KF + Si$ [1], $SiO_2 + 2Mg = 2MgO + Si$ [2], $3SiO_2 + 4Al = 2Al_2O_3 + 3Si$ [3], $MgO + 2HCl = MgCl_2 + 2H_2O$ [4], $Al_2O_3 + 6HCl = 2AlCl_3 + 3H_2O$ [5], $Si + 2Cl_2 = SiCl_4$ [7], $SiCl_4 + 2H_2 = 4HCl + Si$ [8], $SiCl_4 + Zn = 2ZnCl_2 + Si$ [9].
- **5.** При соотношении масс 5:2 на 60 г SiO₂ (1 моль) требуется 60*2/5 = 24 г (2 моля) С. Следовательно, основной продукт окисления углерода CO: SiO₂ + 2C = Si + 2CO↑ [6]. Однако углерод может окисляться и до углекислого газа SiO₂ + C = Si + CO₂↑ [6*]. Тогда некоторая его часть действительно останется в избытке, и будет реагировать с кремнием: Si + C = SiC [6**]. Тогда вещество **Б** SiC, карбид кремния.
- **6.** Для оценки воспользуемся целыми значениями атомных масс. Из 600 кг (10^4 моль) SiO₂ должно было получиться 10^4 моль (280 кг) кремния. Следовательно, 292-280=12 кг в полученном пеке приходится на углерод (10^3 моль), который связан с кремнием в карбид кремния. Его получилось 10^3 моль или 40 кг, т.е. его содержание в пеке 100*40/292=13,7 масс. %. Выход кремния составил $100*(10^4-10^3)/10^4=90$ % = 100*(292-40)/280.
- 7. По реакциям [6] и [6*] 600 кг песка прореагировали с 240-12 = 228 кг углерода. Следовательно, с 240 кг углерода по этим реакциям прореагирует $600*240/228 \approx 632$ кг песка. Таким образом, чтобы выход кремния оказался близок к 100%, к нашей смеси следует добавить 32 кг песка.
- **8.** Карбид кремния, обладающий высокой твердостью и повышенной термической и химической устойчивостью, имеет техническое название карборунд. Простейший способ его получения спекание кремнезема с коксом: $SiO_2 + 3C$ $\xrightarrow{1600}$ $\xrightarrow{-2500}$ $\xrightarrow{\circ}$ C \rightarrow $SiC + 3CO \uparrow$.
- **9.** Схема транспортной реакции: Si + 2I₂ $-\frac{500}{}^{\circ}$ C \rightarrow SiI₄ $-\frac{1000}{}^{\circ}$ C \rightarrow Si + 2I₂.

Системи оценивиния.	
1. Кремний 2 б., связан с кислородом 2 б.	2+2 = 4 6.
2. Полупроводник 1 б., содержание основного вещества 99,9999999 % 2 б.,	1+2=3 6.
(просто «чистота» 1 б.)	1+2=30.
3. Не ядовиты 1 б., низкая реакционная способность (инертность) 1 б.	1+1=26.
4. Уравнения реакций по 1 б.	1×8 = 8 б.
5. Формула и название по 1 б., уравнения реакций по 1 б.	$1 \times 2 + 1 \times 3 = 5 6$.
6. Массовая доля Б в пеке 2 б., выход вещества А 2 б.	2+2=46.
7. Добавить песок 1 б., его масса 2 б.	1+2=3 6.
8. Способ получения 1 б., техническое название 0,5 б., свойства по 0,5 б.	$1+0.5+0.5\times 3=3 6.$
9. Схема транспортной реакции 2 б.	2 б.
Всего	34 балла

55-я Всесибирская открытая олимпиада школьников Второй отборочный этап 2016-2017 уч. года

Решения заданий по химии

8 класс

Задание 1. (авторы Р.А. Бредихин, В.А. Емельянов).

1. Количество протонов определяет заряд ядра и совпадает с порядковым номером элемента в Периодической системе. Массовое число изотопа складывается из суммы числа протонов и нейтронов. Для того чтобы определить количество нейтронов, необходимо из массового числа изотопа вычесть количество протонов. Количество электронов в электронейтральном атоме (атом как целое не имеет электрического заряда) равно количеству протонов, причем, в то время как протоны и нейроны сконцентрированы в ядре, электроны находятся вне его и занимают большую часть объёма атома. В состав ядра атома электроны не входят.

	Состав ядра			Состав атома		
Изотоп	¹ H	³² S	³⁷ Cl	¹³ C	15N	¹⁸ O
Протоны	1	16	17	6	7	8
Нейтроны	0	16	20	7	8	10
Электроны	0	0	0	6	7	8

2. Самые распространенные на Земле изотопы элементов, входящих в состав молекул витаминов B_1 и B_2 , это ${}^{1}H$, ${}^{12}C$, ${}^{14}N$, ${}^{16}O$, ${}^{32}S$, ${}^{35}Cl$.

Количество протонов n_{p+} в молекуле **B**₁: 6*12+1*18+17*2+7*4+8+16=176.

Количество протонов n_{D+} в молекуле **B**₂: 6*17+1*20+7*4+8*6=198.

Количество нейтронов n_n в молекуле $\mathbf{B_1}$: 6*12+18*2+7*4+8+16=160.

Количество нейтронов n_n в молекуле $\mathbf{B_2}$: 6*17+7*4+8*6=178.

3. Согласно определению массовой доли ω = m вещества) / m смеси.

Витамин **A**: $m_A / m_{\Sigma} = 1,38/500 = 0,00276$ или 0,276 %;

Витамин **B**₁: $m_{\text{B1}} / m_{\Sigma} = 1,0/500 = 0,002$ или 0,2 %;

Витамин **B**₂: $m_{\text{B2}} / m_{\Sigma} = 1,0/500 = 0,002$ или 0,2 %;

Витамин **C**: $m_C / m_\Sigma = 35,0/500 = 0,07$ или 7 %.

4. Сначала вычислим молекулярные массы этих витаминов.

Витамин **A**: $M_A = 12*36+1*60+16*2 = 432+60+32 = 524$ a.e.м.

Витамин **C**: $M_C = 12*6+1*8+16*6 = 72+8+96 = 176$ а.е.м.

В 1 г содержится $6.02*10^{23}$ а.е.м., следовательно, масса одной молекулы витамина **A** составит $524/(6.02*10^{23}) = 8.7*10^{-22}$ г.

В 1 драже содержится 35 мг или $35*10^{-3}$ г витамина C, что составляет $v_C = m_C/M_C = 35*10^{-3}/176 = 1,99*10^{-4}$ моль или $1,99*10^{-4}*6,02*10^{23} = 1,2*10^{20}$ молекул.

5. Чтобы сравнивать количество молекул, не обязательно считать именно его, достаточно посчитать и сравнить количество каждого вещества в молях. Вычислим молекулярные массы витаминов \mathbf{B}_1 и \mathbf{B}_2 , которые мы еще не считали.

Витамин $\mathbf{B_1}$: $\mathbf{M_{B1}} = 12*12+1*18+35,5*2+14*4+16+32 = 144+18+71+56+16+32 = 337$ а.е.м.

Витамин **B**₂: $M_{B2} = 12*17+1*20+14*4+16*6 = 204+20+56+96 = 376$ а.е.м.

Теперь вычислим количество каждого витамина A, B_1 и B_2 в молях в составе одного драже.

 $v_A = 1.38*10^{-3}/524 = 2.63*10^{-6}$, $v_{B1} = 1*10^{-3}/337 = 2.97*10^{-6}$, $v_{B2} = 1*10^{-3}/376 = 2.66*10^{-6}$ моль.

Таким образом, из предложенных трех витаминов, A, B_1 и B_2 , в составе препарата больше всего молекул витамина A.

6. По условию задачи весь углерод, входивший в состав витаминов, выделился из организма в виде углекислого газа. Поскольку из одного атома углерода получается одна молекула CO₂, рассчитаем количество углерода, входящего в состав витаминов, для 100 драже.

 $v_{CO2} = v_C = 100*(36v_A + 12v_{B1} + 17v_{B2} + 6v_C) = 100*10^{-6}(36*2,63 + 12*2,97 + 17*2,66 + 6*199) = 0,137$ моль. Масса выделившегося углекислого газа составит 0,137*44 = 6,03 г, его объем при нормальных условиях 0,137*22,4 = 3,07 л.

Система оценивания:

1. Составы ядер и атомов по 1 б.	$1 \times 6 = 6 6.$
2. Количество протонов и нейтронов в каждой из молекул по 1 б.	$1 \times 4 = 4 6.$
3. Массовые доли каждого витамина по 1 б.	$1 \times 4 = 4 6.$
4. Масса молекулы 2 б., количество молекул 2 б.	2+2=46.
5. Верные ответы по 1 б.	1+1=2 6.
6. Масса CO ₂ 3 б. (за верное количество 2 б.), объем 1 б.	3+1=46.
Всего	24 балла

Задание 2. (автор О.Г. Сальников).

1. Из предисловия к задаче следует, что **X** – сера. Тогда **A** – S_8 (в качестве верного ответа засчитывается и S), **B** – SO_2 . При каталитическом окислении SO_2 кислородом образуется SO_3 (C), взаимодействие которого с водой приводит к образованию H_2SO_4 (**D**).

Уравнения реакций: $S + O_2 = SO_2$;

 $2SO_2 + O_2 = 2SO_3$;

 $SO_3 + H_2O = H_2SO_4.$

2. Предположим, что вещество **E** имеет формулу M_xS_y . Тогда $0,5345 = 32,06 \cdot y/(32,06 \cdot y + M \cdot x)$, где M-атомная масса металла M. Это уравнение преобразуется к виду $59,98 \cdot y = 32,06 \cdot y + M \cdot x$, откуда $M=27,92 \cdot y/x$. Перебирая натуральные значения x и y, получаем таблицу возможных значений M:

7	1	x							
M		1	2	3	4	5	6	7	8
	1	27,92	13,96	9,31	6,98 (Li)	5,58	4,65	3,99	3,49
	2	55,84 (Fe)	27,92	18,61	13,96	11,17	9,31	7,98	6,98 (Li)
	3	83,76	41,88	27,92	20,94	16,75	13,96	11,97	10,47
١,,	4	111,68	55,84 (Fe)	37,23	27,92	22,34	18,61	15,95	13,96
У	5	139,6	69,80 (Ga)	46,53	34,90	27,92	23,27	19,94	17,45
	6	167,52 (Er)	83,76	55,84 (Fe)	41,88	33,50	27,92	23,93 (Mg)	20,94
	7	195,44 (Pt)	97,72	65,15 (Zn)	48,86	39,09 (K)	32,57	27,92	24,43 (Mg)
	8	223,36	111,68	74,45	55,84 (Fe)	44,67 (Sc)	37,23	31,91	27,92

По молярным массам подходит довольно большое количество металлов. Однако реалистичный состав имеет только FeS_2 , который действительно является одним из основных природных источников серы. Таким образом, $E - FeS_2$ (минерал пирит). Уравнение реакции: $4FeS_2 + 11O_2 = 2Fe_2O_3 + 8SO_2$.

3. Найдём молярные массы кислот M (в расчёте на один атом серы). Для этого используем формулу $M=32,06/\omega(S)$. Также найдём массу, приходящуюся на остальные элементы. Получим следующую таблицу.

Вещество	F	G	Н	I	J
М, г/моль	57,07	81,06	89,08	97,06	114,09
[M-M(S)], г/моль	25,01	49,00	57,02	65,00	82,03

Так как все эти кислоты содержат только серу, кислород и водород, то несложно подобрать простейшие формулы по массам, приходящимся на остальные элементы. Получим: $\mathbf{F} - \mathrm{HSO}_{1,5}$, $\mathbf{G} - \mathrm{HSO}_3$, $\mathbf{H} - \mathrm{HSO}_{3,5}$, $\mathbf{I} - \mathrm{HSO}_4$, $\mathbf{J} - \mathrm{H}_2\mathrm{SO}_5$. Поскольку формулы \mathbf{F} и \mathbf{H} содержат полуцелое количество атомов кислорода, их следует удвоить, то есть $\mathbf{F} - \mathrm{H}_2\mathrm{S}_2\mathrm{O}_3$, $\mathbf{H} - \mathrm{H}_2\mathrm{S}_2\mathrm{O}_7$.

4. Так как кислород и сера образуют чётное число связей, а водород образует одну связь, то все эти кислоты могут содержать только чётное количество атомов водорода. Значит, вещества G и I должны иметь формулы $H_2S_2O_6$ и $H_2S_2O_8$ соответственно.

Структурные формулы кислот:

Система оценивания:

1. Формулы по 1 б., уравнения реакций по 1 б.	$1 \times 4 + 1 \times 3 = 7 6$.
2. Формула Е 2 б., уравнение реакции 1 б.	2+1=3 6.
3. Установление простейших формул F-J по 2 б.	$2 \times 5 = 10 \ 6.$
4. Истинные формулы G и I по 1 б.	$1\times 2=2$ 6.
Структурные формулы по 1 б.	$1 \times 5 = 5 6.$
Всего	27 баллов

Задание 3. (авторы А.И. Губанов, В.А. Емельянов).

- 1. Элемент X кремний. В подавляющем большинстве природных веществ кремний связан непосредственно с кислородом.
- **2.** Главное свойство кремния он «полупроводник»: значение его удельной электропроводности существенно меньше, чем у металлов, но значительно больше, чем у диэлектриков. Количество «девяток» показатель чистоты продукта. «Девять девяток» сверхчистый продукт с содержанием основного вещества 99,999999 %, то есть содержание примесей не более 10^{-7} %.
- 3. Тут Дэн Браун, однако, погорячился. Ни сам кремний, ни его оксид не являются ядами вследствие крайне низкой реакционной способности.
- **4.** $SiF_4 + 4K = 4KF + Si$ [1], $SiO_2 + 2Mg = 2MgO + Si$ [2], $3SiO_2 + 4Al = 2Al_2O_3 + 3Si$ [3], $MgO + 2HCl = MgCl_2 + 2H_2O$ [4], $Al_2O_3 + 6HCl = 2AlCl_3 + 3H_2O$ [5], $Si + 2Cl_2 = SiCl_4$ [7], $SiCl_4 + 2H_2 = 4HCl + Si$ [8], $SiCl_4 + Zn = 2ZnCl_2 + Si$ [9].
- **5.** При соотношении масс 5:2 на 60 г SiO₂ (1 моль) требуется 60*2/5 = 24 г (2 моля) С. Следовательно, основной продукт окисления углерода CO: SiO₂ + 2C = Si + 2CO↑ [6]. Однако углерод может окисляться и до углекислого газа SiO₂ + C = Si + CO₂↑ [6*]. Тогда некоторая его часть действительно останется в избытке, и будет реагировать с кремнием: Si + C = SiC [6**]. Тогда вещество **Б** SiC, карбид кремния (карборунд).
- **6.** Для оценки воспользуемся целыми значениями атомных масс. Из 600 кг (10^4 моль) SiO₂ должно было получиться 10^4 моль (280 кг) кремния. Следовательно, 292-280=12 кг в полученном пеке приходится на углерод (10^3 моль), который связан с кремнием в карбид кремния. Его получилось 10^3 моль или 40 кг, т.е. его содержание в пеке 100*40/292=13,7 масс. %. Выход кремния составил $100*(10^4-10^3)/10^4=90$ % = 100*(292-40)/280.
- 7. По реакциям [6] и [6*] 600 кг песка прореагировали с 240-12 = 228 кг углерода. Следовательно, с 240 кг углерода по этим реакциям прореагирует $600*240/228 \approx 632$ кг песка. Таким образом, чтобы выход кремния оказался близок к 100 %, к нашей смеси следует добавить 32 кг песка.

enemana onemanan.	
1. Кремний 2 б., связан с кислородом 2 б.	2+2=46.
2. Полупроводник 1 б., содержание основного вещества 99,9999999 % 2 б., (просто «чистота» 1 б.)	1+2=3 6.
3. Не ядовиты 1 б., низкая реакционная способность (инертность) 1 б.	1+1=26.
4. Уравнения реакций по 1 б.	1×8 = 8 б.
5. Формула и название по 1 б., уравнения реакций по 1 б.	$1 \times 2 + 1 \times 3 = 5 6.$
6. Массовая доля ${m E}$ в пеке 2 б., выход вещества ${m A}$ 2 б.	2+2=46.
7. Добавить песок 1 б., его масса 2 б.	1+2=3 6.
Всего	29 баллов